
mu uuuu ui iiui iiui mu iuu lull uui mu uui iuui uu uii mi

(12) United States Patent
Hinchey et al.

(54) AUTOMATA LEARNING ALGORITHMS AND
PROCESSES FOR PROVIDING MORE
COMPLETE SYSTEMS REQUIREMENTS
SPECIFICATION BY SCENARIO
GENERATION, CSP-BASED
SYNTAX-ORIENTED MODEL
CONSTRUCTION, AND R2D2C SYSTEM
REQUIREMENTS TRANSFORMATION

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
Tiziana Margaria, Dortmund (DE);
James L. Rash, Davidsonville, MD
(US); Christopher A. Rouff, Beltsville,
MD (US); Bernard Steffen, Dortmund
(DE)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 337 days.

(21) Appl. No.: 11/536,132

(22) Filed:	 Sep. 28, 2006

(65)	 Prior Publication Data

US 2007/0162410 Al	 Jul. 12, 2007

Related U.S. Application Data

(60) Provisional application No. 60/757,559, filed on Jan.
6, 2006.

(1o) Patent No.:	 US 7,668,796 B2
(45) Date of Patent:	 Feb. 23, 2010

(51) Int. Cl.
G06N 5102	 (2006.01)
G06N 3108	 (2006.01)

(52) U.S. Cl 706/48; 717/100
(58) Field of Classification Search 706/48

See application file for complete search history.

(56) References Cited

OTHER PUBLICATIONS

Pdschel et al., "Spiral: A Generator for Platform-Adapted Libraries
of Signal Processing Alogorithms", 2004.*

* cited by examiner

Primary Examiner David R Vincent
Assistant Examiner Nathan H Brown, Jr.
(74) Attorney, Agent, or Firm Heather Goo

(57) ABSTRACT

Systems, methods and apparatus are provided through which
in some embodiments, automata learning algorithms and
techniques are implemented to generate a more complete set
of scenarios for requirements based programming. More spe-
cifically, a CSP-based, syntax-oriented model construction,
which requires the support of a theorem prover, is comple-
mented by model extrapolation, via automata learning. This
may support the systematic completion of the requirements,
the nature of the requirement being partial, which provides
focus on the most prominent scenarios. This may generalize
requirement skeletons by extrapolation and may indicate by
way of automatically generated traces where the requirement
specification is too loose and additional information is
required.

44 Claims, 27 Drawing Sheets

1oa
AUTOMATA
LEARNING

RESOURCE

102

SCENARIO(S)

106 AUTOMATA
LEARNING

GENERATOR

108
SCENARIO(S)

110
IMPLEMENTATION

GENERATOR

112
IMPLEMENTATION

100

U.S. Patent	 Feb. 23, 2010	 Sheet 1 of 27	 US 7,668,796 B2

102	 AUTOMATA
	 104

SCENARIO(S)
	

LEARNING
RESOURCE

106	 AUTOMATA
LEARNING
GENERATOR

108

SCENARIO(S)

IMPLEMENTATION
GENERATOR

IMPLEMENTATION

FIG. 1	 ^ 100

110

112

U.S. Patent	 Feb. 23, 2010	 Sheet 2 of 27	 US 7,668,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

204	 GENERATE SYSTEM
IMPLEMENTATION FROM

SCENARIO(S)

FIG. 2	 I\,— 200

U.S. Patent	 Feb. 23, 2010	 Sheet 3 of 27	 US 7,668,796 B2

302	 INITIALIZE LEARNING
ALGORITHM WITH

TRACE(S) OF
REQUIREMENTS

304	 CONSTRUCT
CONSISTENT

BEHAVIORAL MODEL

202

FIG. 3	 I\— 300

U.S. Patent	 Feb. 23, 2010	 Sheet 4 of 27	 US 7,668,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

204	 GENERATE FORMAL
SPECIFICATION FROM

SCENARIO(S)

ANALYZE FORMAL SPECIFICATION

404

NO
-LAW IN FORMAL
SPECIFICATION	 o

YES

CORRECT THE FLAW IN THE SCENARIO(S)

402

406

FIG. 4	 400

U.S. Patent
	

Feb. 23, 2010	 Sheet 5 of 27	 US 7,668,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

502
TRANSLATE SCENARIO(S) INTO A FORMAL

SPECIFICATION

504
ANALYZE THE FORMAL SPECIFICATION

506
TRANSLATE THE FORMAL SPECIFICATION

INTO SCRIPT

FIG. 5	 500

U.S. Patent
	

Feb. 23, 2010	 Sheet 6 of 27	 US 7,668,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

MECHANICALLY TRANSLATE DOMAIN
KNOWLEDGE INTO FORMAL SPECIFICATION

SEGMENTS

602

604
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

TRANSLATE THE SINGLE FORMAL
SPECIFICATION
INTO SCRIPT(S)

606

608

GENERATE A SCRIPT FROM THE SCRIPT(S)

FIG. 6	 I\,"— 600

U.S. Patent	 Feb. 23, 2010
	

Sheet 7 of 27
	

US 7,668,796 B2

702
VERIFY
SYNTAX

704
MAP TO FORMAL
SPECIFICATION

602
706	 VERIFY

CONSISTENCY
OF FORMAL

SPECIFICATION

708
VERIFY LACK

OF OTHER
PROBLEMS

FIG. 7	 I\"— 700

U.S. Patent
	

Feb. 23, 2010	 Sheet 8 of 27	 US 7,668,796 B2

804

806

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

PATTERN-MATCHING SCENARIO(S) INTO
PROCESS-BASED SPECIFICATION SEGMENTS

AGGREGATE THE PROCESS-BASED
SPECIFICATION SEGMENTS INTO A SINGLE

PROCESS-BASED SPECIFICATION

TRANSLATE THE SINGLE PROCESS-BASED
SPECIFICATION

INTO HIGH LEVEL LANGUAGE INSTRUCTIONS

COMPILE THE HIGH LEVEL LANGUAGE
INSTRUCTIONS INTO EXECUTABLE CODE

802

808

FIG. 8	 I\"-- 800

U.S. Patent	 Feb. 23, 2010	 Sheet 9 of 27
	

US 7,668,796 B2

902
VERIFY SYNTAX OF THE

SCENARIO(S)

904
MAP THE SCEANRIO(S) TO

PROCESS-BASED
SPECIFICATION

906-\", VERIFY CONSISTENCY OF THE
PROCESS-BASED
SPECIFICATION

WITH THE SCENARIO(S)

908
VERIFY LACK OF OTHER

PROBLEMS IN THE PROCESS-
BASED SPECIFICATION

802

FIG. 9	 900

U.S. Patent	 Feb. 23, 2010	 Sheet 10 of 27	 US 7,668,796 B2

ANALYZE A SCENARIO
1002

1004

NO
FLAW IN SCENARIO 	 No

YES

CORRECT THE FLAW IN THE SCENARIO
1006

FIG. 10	 1000

U.S. Patent
	

Feb. 23, 2010	 Sheet 11 of 27	 US 7,668 ,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

PATTERN-MATCHING THE SCENARIO(S) INTO
A FORMAL SPECIFICATION

1102

1104

ANALYZE THE FORMAL SPECIFICATION

TRANSLATE THE FORMAL SPECIFICATION
INTO AN IMPLMENTATION

1106

FIG. 11	 \^ 1100

U.S. Patent
	

Feb. 23, 2010	 Sheet 12 of 27	 US 7,668,796 B2

202	 GENERATE SCENARIO(S)
IN REFERENCE TO

AUTOMATA-LEARNING
RESOURCES

MECHANICALLY PATTERN-MATCH THE
SCENARIO(S) INTO FORMAL SPECIFICATION

SEGMENTS

1202

1204
AGGREGATE THE FORMAL SPECIFICATION

SEGMENTS INTO A SINGLE FORMAL
SPECIFICATION

FIG. 12	 1200

U.S. Patent	 Feb. 23, 2010	 Sheet 13 of 27
	

US 7,668,796 B2

1302	 VERIFY
SYNTAX OF

SCENARIO(S)

MAP
1304	 SCENARIO(S) TO

A FORMAL
SPECIFICATION

SEGMENT

1306	 CONSISTENCY
OF THE FORMAL
SPECIFICATION

SEGMENT

1308	
VERIFY LACK OF

OTHER PROBLEMS
IN THE FORMAL
SPECIFICATION

SEGMENT

1202

FIG. 13	 1300

U.S. Patent	 Feb. 23, 2010	 Sheet 14 of 27	 US 7,668,796 B2

00

ow

w

M OU OO
rU

Z

r

co
C)

M Q>

N
O
N
TT y

VM
Jl'	 coW

U r	 ^^ Z r
Q Z _U

w
Z_ >

U) O p
a-

Oa cl
w
Q

Q

w m
(!) N wYr

r

Q

W 00
vl-

T

U
O Qof^0

0
U H

J Z
U) w
cl

O O	 O O C- z
r Ntr	 r r r

NN NO r
r r T

a

FIG. 15	 ^ 1500

U.S. Patent	 Feb. 23, 2010	 Sheet 15 of 27
	

US 7,668,796 B2

r I U. '110	 `-- 1600

U.S. Patent	 Feb. 23, 2010	 Sheet 16 of 27 US 7,668,796 B2

C

U.S. Patent	 Feb. 23, 2010	 Sheet 17 of 27 US 7,668,796 B2

a

FIG. 17 1700

CON
r

00N
r

N
r

N NN O
r r

r
r

U.S. Patent	 Feb. 23, 2010	 Sheet 18 of 27	 US 7,668,796 B2

U.S. Patent	 Feb. 23, 2010	 Sheet 19 of 27	 US 7,668,796 B2

102 104
AUTOMATA

SCENARIO(S) 	 LEARNING
RESOURCE

106	 AUTOMATA
LEARNING

GENERATOR

108------ 1902

	

SCENARIO(S)	 INFERENCE
ENGINE

1904
TRANSLATOR

1906	 /
SPECIFICATION	 ANALYZER	

1908

1910
SCRIPT

TRANSLATOR

1912

SCRIPT

FIG. 19	 "1,-1900

U.S. Patent	 Feb. 23, 2010	 Sheet 20 of 27
	

US 7,668,796 B2

102	 AUTOMATA
	 104

SCENARIO(S)	 LEARNING
RESOURCE

106	 AUTOMATA
LEARNING

GENERATOR

2002	 I- - - - -	 1902
LAWS OF	 SCENARIO(S)	 I INFERENCE

CONCURRENCY	 108	 I ENGINE

1904
TRANSLATOR

1906,

1908
FORMAL	 ANALYZERSPECIFICATION

2004	 REVERSE 1910	 SCRIPT

	

SCRIPT	 TRANSLATORTRANSLATOR

1912

SCRIPT

FIG. 20
	

2000

N
T

coN
T

N
T

N NN O
T T

T
T

U.S. Patent	 Feb. 23, 2010	 Sheet 21 of 27	 US 7,668,796 B2

U.S. Patent	 Feb. 23, 2010	 Sheet 22 of 27	 US 7,668,796 B2

102104A

	

SCENARIOS)	
LUTOMATA

EARNING
RESOURCE

106	 AUTOMATA	 108
LEARNING	 SCENARIO(S)
GENERATOR

2201
THEOREM	 LAWS OF	 2002

	

PROVER	 CONCURRENCY

2202
2204CSP

TRANSLATOR	
CSp

SPECIFICATION

2208	 2210
VISUALIZATION	 ANALYZER	 CSP TOOLTOOL	 2206

2214

CODE
2204	 TRANSLATOR

MODIFIED CSP
SPECIFICATION

HIGH-LEVEL	 2216
COMPUTER
LANGUAGE

FIG. 22	
^ 2200	 PROGRAM

U.S. Patent Feb. 23, 2010 Sheet 23 of 27 US 7,668,796 B2

00
N coW Q^

W
O

CD

Lu2

co oo
co

_U N

Z A'-)

0 Z
Q

Z
>r J > N

C)
CD
C)

T

N
NN NN NN O

C'7	 00

^	
coU

z ^ O ^ O
Y W J w CD

Z W

^ U Z Z
OU

Z Z>
co

O

w
Y QOQ
W m

W
N

W
Y

C\l

W

(n Q

00

U O
0

Q ^ w

^ w
0 0 0 o co z

N O

U.S. Patent	 Feb. 23, 2010	 Sheet 24 of 27	 US 7,668,796 B2

102	 AUTOMATA
	 104

SCENARIO(S)	 LEARNING
RESOURCE

106	 AUTOMATA
LEARNING
GENERATOR

108	 1902

SCENARIO(S)	 INFERENCE
ENGINE

2402
PATTERN
MATCHER

2404
	

2406
FORMAL	 / ^^ ANALYZERSPECIFICATION 	 _ I

2408

TRANSLATOR

2410
IMPLEMENTATION

FIG. 24
	

^,— 2400

U.S. Patent	 Feb. 23, 2010	 Sheet 25 of 27	 US 7,668,796 B2

00
N

T
w [If
w

LO
cV

O?
W LL

LL

co	 O O
O
LO

U N
Z -

O z
m

C',
	 Q

T J T > 00
O

(D
O

C14
O

O
NtN N N O

N
^ r̂r ^

m	
00

U

Z

r
r

Y O N (n O CD w
Q J J J z U

w z z`

w

Wz ?WLO

O ^--
a

cl
elfw

Y
Q
OQ

W m

^ Nr
W
Y

r

a o
w

a^
co

T
U O

O

Q

U I-

wwJ W
wo

0 0
co

°
c4

z

T T r T T

N O^ ^ r̂T T r

U.S. Patent	 Feb. 23, 2010	 Sheet 26 of 27	 US 7,668,796 B2

	102AUTOMATA	
104

SCENARIO(S)	 LEARNING
RESOURCE

106	 AUTOMATA	 108

	

LEARNING	 SCENARIO(S)
GENERATOR

2201	 2002THEOREM	 LAWS OF
PROVER	 CONCURRENCY

2602
IMPLEMENTATION	 2604

PATTERN	 IMPLEMENTATIONMATCHER

2608	 2610
VISUALIZATION	 ANALYZER	 TOOLTOOL	 2606

2612
MODIFIED	 2614

	

IMPLEMENTATION	 CODE
TRANSLATOR

HIGH-LEVEL	 2616
COMPUTER
LANGUAGE
PROGRAM

FIG . 26	 2600

tiN
CD
LL

O
N
r

Z wU
Z w
Op
a_

Q
O
m

w
Y

00r

H
w
Z

w
H
Z

r

U.S. Patent	 Feb. 23, 2010	 Sheet 27 of 27	 US 7,668,796 B2

00
N
r

CDN
r

w Q^
H wO^
wa

^ 0

	

00r	 I^

_U	 N

Z

OZ	 ^ Zc^	
>
Q

J	 > O	 O	 r
	CD 	 CD	 CD

	

N	 N	 N

C'7

U	 r	 - O
Z	 r Z w O

 w
Z

w
2 O

w ^QQ
U Q

z

Q

w Q

Nr
r

w

	

QO Q^	 0U	 ^O	 OU

U)

CD	 00	 _O	 CD

r	 r	 r	 r	 r

w
Q
w

w
Y
Q
w
0-
U)

N
r

J
U)

N NN O
r r

US 7,668,796 B2
1

AUTOMATA LEARNING ALGORITHMS AND
PROCESSES FOR PROVIDING MORE

COMPLETE SYSTEMS REQUIREMENTS
SPECIFICATION BY SCENARIO

GENERATION, CSP-BASED
SYNTAX-ORIENTED MODEL

CONSTRUCTION, AND R2D2C SYSTEM
REQUIREMENTS TRANSFORMATION

RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/757,559, filed on Jan. 6, 2006.

ORIGIN OF THE INVENTION

The invention described herein was made by employees of
the United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

FIELD OF THE INVENTION

This invention relates generally to software development
processes and more particularly to generating a system from
scenarios.

BACKGROUND OF THE INVENTION

High dependability and reliability is a goal of all computer
and software systems. Complex systems in general cannot
attain high dependability without addressing crucial remain-
ing open issues of software dependability. The need for ultra-
high dependable systems increases continually, along with a
corresponding increasing need to ensure correctness in sys-
tem development.

The development of a system can begin with the develop-
ment of a requirements specification, such as a formal speci-
fication or an informal specification. A formal specification
might be encoded in a high-level language, whereas require-
ments in the form of an informal specification can be
expressed in restricted natural language, "if-then" rules,
graphical notations, English language, programming lan-
guage representations, flowcharts, scenarios or even using
semi-formal notations such as unified modeling language
(UML) use cases.

Requirement specifications in terms of individual traces
are by nature very partial and represent only the most promi-
nent situations. This partiality is one of the major problems in
requirement engineering. Partiality often causes errors in the
system design that are difficult to fix. Thus, techniques to
improve the partiality of requirements specifications are of
major practical importance.

After completion of a requirements specification that rep-
resents domain knowledge, the system is developed. A formal
specification may not necessarily be used by the developer in
the development of a system. In the development of some
systems, computer readable code is generated. The generated
code can be encoded in a computer language, such as a
high-level computer language. Examples of such languages
include Java, C, C Language Integrated Production System
(CLIPS), and Prolog.

In another aspect of conventional systems, sensor networks
perform any number of different tasks, among them planetary
and solar system exploration. An example of a sensor network
for solar system exploration is the Autonomous Nano Tech-

2
nology Swarm mission (ANTS), which will send 1,000 pico-
class (approximately 1 kg) spacecraft to explore the asteroid
belt. The ANTS spacecraft acts as a sensor network making
observations of asteroids and analyzing composition of the

5 asteroids. Sensor networks are also applicable for planetary
(e.g., Martian) exploration, to yield scientific information on
weather and geology. For Earth exploration missions, sensor
networks are applicable to early warnings about natural disas-
ters and climate change.

10 NASA sensor networks can be highly distributed autono-
mous "systems of systems" that must operate with a high
degree of reliability. The solar system and planetary explora-
tion networks necessarily experience long communications
delays with Earth. The exploration networks are partly and

15 occasionally out of touch with the Earth and mission control
for long periods of time, and must operate under extremes of
dynamic environmental conditions. Due to the complexity of
these systems as well as the distributed and parallel nature of
the exploration networks, the exploration networks have an

20 extremely large state space and are impossible to test com-
pletely using traditional testing techniques. The more "code"
or instructions that can be generated automatically from a
verifiably correct model, the less likely that human develop-
ers will introduce errors. In addition, the higher the level of

25 abstraction that developers can work from, as is afforded
through the use of scenarios to describe system behavior, the
less likely that a mismatch will occur between requirements
and implementation and the more likely that the system can
be validated. Working from a higher level of abstraction also

30 provides that errors in the system are more easily caught,
since developers can more easily see the "big picture" of the
system. Conventional systems also do not capture expert
knowledge from natural language description through to low-
level implementations, such as implementations in CLIPS,

35 while maintaining correctness. In addition, conventional sys-
tems usually require other ways to validate procedures, for
example from the Hubble Robotic Servicing Mission
(HRSM), i.e. the procedures for replacement of cameras on
the Hubble Space Telescope (HST). Furthermore, a test-

4o based model generationby classical automata learning is very
expensive, and requires an impractically large number of
queries to the system, each of which must be implemented as
a system-level test case. In particular trace-combination
methods of testing have proven to be expensive.

45 For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art to reduce partiality of system require-
ment specifications, reduce system development time, reduce

50 the amount of testing required of a new system, and improve
confidence that the system reflects the requirements. There is
also a need to develop systems starting at higher levels of
abstraction.

55	 BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
problems are addressed herein, which will be understood by
reading and studying the following discussion.

60 In some embodiments, automata learning algorithms and
techniques are implemented to generate a more complete set
of scenarios for requirements based programming, which
may solve the need in the prior art to reduce the partiality of
system requirements.

65 In other embodiments, requirements expressed as a set of
scenarios are generated and modified by automata learning
processes and resources and the modified scenarios are con-

US 7,668,796 B2
3

verted to a process based description or other implementa-
tion. The automata learning processes may provide a more
complete requirement specification which may solve the need
in the prior art to reduce the partiality of system requirements.

In yet other embodiments, a CSP-based, syntax-oriented
model construction, which requires the support of a theorem
prover, is complemented by model extrapolation, via
automata learning. This may support the systematic comple-
tion of the requirements, the nature of the requirement being
partial, which provides focus on the most prominent sce-
narios. This may generalize requirement skeletons by
extrapolation and may indicate by way of automatically gen-
erated traces where the requirement specification is too loose
and additional information is required.

In still other embodiments, a R2D2C methodology is
implementedto mechanically transform system requirements
via provably equivalent models to executable computer code.
In further embodiments, a CSP-based, syntax-oriented model
construction of the R2D2C method is complemented with a
learning-based method to provide requirements completion.
Automatic (active) automata learning can systematically
enriche requirement specifications posed in terms of traces.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
aspects and advantages described in this summary, further
aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that provides an overview of a
system to generate an implementation of a software system
from requirements of the system using automata learning,
according to an embodiment;

FIG. 2 is a flowchart of a method to generate a software
system using automata learning techniques, according to an
embodiment;

FIG. 3 is a flowchart of a method to generate a scenario
using automata techniques, according to an embodiment;

FIG. 4 is a flowchart of a method to validate/update a
system, according to an embodiment;

FIG. 5 is a flowchart of a method to validate/update sce-
narios of a system, according to an embodiment;

FIG. 6 is a flowchart of a method to generate a script from
scenarios using automata learning, according to an embodi-
ment;

FIG. 7 is a flowchart of a method to mechanically translate
each of a plurality of scenarios to a plurality of formal speci-
fication segments, according to an embodiment;

FIG. 8 is a flowchart of a method to generate an executable
system from a scenario using automata learning, according to
an embodiment;

FIG. 9 is a flowchart of a method to translate mechanically
each of a plurality of requirements of the scenario(s) to a
plurality of process-based specification segments, according
to an embodiment;

FIG. 10 is a flowchart of a method to recursively/heuristi-
cally validate/update a system, according to an embodiment;

FIG. 11 is a flowchart of a method to pattern-match sce-
narios into a formal specification, analyze the formal speci-
fication, and translate the formal specification into an imple-
mentation, according to an embodiment;

FIG. 12 is a flowchart of a method to generate a single
formal specification from scenarios using automata learning,
according to an embodiment;

4
FIG. 13 is a flowchart of a method to mechanically pattern-

match domain knowledge to a plurality of formal specifica-
tion segments, according to an embodiment;

FIG. 14 is a block diagram of a hardware and operating
5 environment in which different embodiments can be prac-

ticed;
FIG. 15 is a state diagram of a prefix closed deterministic

finite state machine of membership query, according to an
embodiment;

10 FIG. 16 is a state diagram of an independent action deter-
ministic finite state machine of membership query, according
to an embodiment;

FIG. 17 is a state diagram of a symmetric action determin-
istic finite state machine of membership query, according to

15 an embodiment;
FIG. 18 illustrates an environment similar to that of FIG.

14, but with the addition of an automata learning resource,
according to an embodiment;

FIG. 19 is a block diagram of an apparatus to engineer a
20 script or procedure from scenarios using an automata-leam-

ing generator, according to an embodiment;
FIG. 20 is a block diagram of a particular implementation

of an apparatus to translate scenarios to a script and reverse
engineer a script into a formal specification using an

25 automata-learning generator, according to an embodiment;
FIG. 21 is a block diagram of an environment similar to that

of FIG. 14, but with the addition of some of the apparatus
illustrated in FIG. 20;

FIG. 22 is a block diagram of a particular R2D2C imple-
30 mentation of an apparatus to generate a high-level computer

source code program from scenario(s), using an automata-
learning generator, according to an embodiment;

FIG. 23 is a block diagram of an environment similar to that
of FIG. 14, but with the addition of some of the apparatus

35 illustrated in FIG. 22;
FIG. 24 is a block diagram that provides an overview of an

apparatus to engineer an implementation from scenarios
using an automata-learning generator, according to an
embodiment;

40 FIG. 25 is a block diagram of an environment similar to that
of FIG. 14, but with the addition of some of the apparatus
illustrated in FIG. 24;

FIG. 26 is a block diagram of an apparatus to generate a
high-level computer source code program from scenario(s)

45 using pattern-matching and R2D2C, according to an embodi-
ment, using an automata-learning generator; and

FIG. 27 is a block diagram of a hardware and operating
environment in which a pattern-matching R2D2C implemen-
tation illustrated in FIG. 26 is implemented, according to an

50 embodiment.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference is made to
55 the accompanying drawings that form a part hereof, and in

which is shown by way of illustration specific embodiments
which can be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-

60 ments can be utilized and that logical, mechanical, electrical
and other changes can be made without departing from the
scope of the embodiments. The following detailed descrip-
tion is, therefore, not to be taken in a limiting sense.

The detailed description is divided into six sections. In the
65 first section, an embodiment of a system level overview is

described. In the second section, embodiments of methods
are described. In the third section, an embodiment of the

US 7,668,796 B2
5

hardware and the operating environment in conjunction with
which embodiments can be practiced is described. In the
fourth section, particular CSP implementations of embodi-
ments are described. In the fifth section, particular apparatus
embodiments are described. Finally, in the sixth section, a
conclusion of the detailed description is provided.

System Level Overview

FIG. 1 is a block diagram that provides an overview of a
system 100 to generate an implementation of a software sys-
tem from requirements of the system using automata learn-
ing, according to an embodiment. System 100 may produce a
system by generating one or more scenarios that describe
requirements of the system in reference to automata-learning
resources and then generating implementations from the one
or more scenarios. The automata learning processes may
provide a more complete requirement specification, which
may solve the need in the prior art to reduce the partiality of
system requirements.

System 100 may include one or more scenarios 102 and
one or more automata learning resource 104 that are input to
or received by an automata learning generator 106. The
automata learning resource 104 can represent a very broad
category of automata software components that may include
one or more functional software components such as dynamic
link libraries, plug-in components, text files that describe
functions, requirements details, configuration details, and/or
executable programs to perform or direct automata learning
processes.

The automata learning generator 106 may perform learn-
ing/searching functions to identify and remedy missing and/
or incomplete aspects of the scenario(s) 102. The automata
learning generator 106 can generate another set of one or
more scenarios 108 that are more complete than scenarios(s)
102. The one or more scenarios 108 may be received by an
implementation generator 110, which in turn may generate an
implementation 112.

The scenarios 102 and 108 can be written in a particular
syntax, such as constrained natural language, graphical rep-
resentations, and so forth. The scenarios 102 and 108 can
embody software applications, although one skilled in the art
will recognize that other systems fall within the purview of
this invention.

Method Embodiments

FIG. 2 is a flowchart of a method 200 to generate a software
system using automata learning techniques, according to an
embodiment. Method 200 may solve the need in the art to
reduce the partiality of system requirements.

In some embodiments, method 200 may be performed by
the automata learning generator 106 in FIG. 1.

Method 200 may include generating 202 at least one sce-
nario 108 that describes requirements of the system in refer-
ence to automata-learning resources 104. One embodiment of
action 202 is described in FIG. 3 below.

A scenario can be defined as a natural language text (or a
combination of any, e.g. graphical, representations of sequen-
tial steps or events) that describes the software's actions in
response to incoming data and the internal goals of the soft-
ware. Some scenarios can also describe communication pro-
tocols between systems and between the components within
the systems. Also, some scenarios can be known as UML
use-cases. In some embodiments, a scenario may describe
one or more potential executions of a system, describe what

6
happens in a particular situation, and what range of behaviors
is expected from or omitted by the system under various
conditions.

Method 200 may also include generating 204 implemen-
s tations from the at least one scenario. In at least one embodi-

ment, generating 204 can be performed by pattern matching
with set comprehensions without a theorem prover or a for-
mal proof of correctness. The systems, methods and appara-
tus may include pattern-matching an equivalent formal model

io from informal specification. Such a model can be analyzed
for contradictions, conflicts, use of resources before the
resources are available, competition for resources, and so
forth. From such a formal model, an implementation can be
automatically generated in a variety of notations. An imple-

15 mentation may include traditional programming language
code, machine language code, scripts, and/or procedures. The
approach may improve the resulting implementation, which
can be provably equivalent to the procedures described at the
outset, which in turn can improve confidence that the system

20 reflects the requirements, and in turn can reduce system
development time and reduce the amount of testing required
of a new system. Moreover, two or more implementations can
be "reversed" to appropriate formal models, the models can
be combined, and the resulting combination checked for con-

25 flicts. Then, the combined, error-free model can be used to
generate a new (single) implementation that combines the
functionality of the original separate implementations, and is
more likely to be correct.

In regards to generating 202 at least one scenario 108 in
so automata learning, machine learning can automatically gen-

erate a description of a system. Automata learning can
attempt to construct a deterministic finite automaton (see
below) that matches the behavior of a given target automaton
on the basis of observations of the target automaton and

35 perhaps some further information on the internal structure of
the target automaton.

One example of an automata learning algorithm may be
Angluin's learning algorithm L*. L*, also referred to as an
active learning algorithm, can learn a finite automaton

4o actively posing membership queries and equivalence queries
to that automaton in order to extract behavioral information,
and refine successively a hypothesis automaton based on the
answers. A membership query can test whether a string (a
potential run) is contained in the target automaton's language

45 (its set of runs), and an equivalence query can compare the
hypothesis automaton with the target automaton for language
equivalence in order to determine whether the learning pro-
cedure was (already) successfully completed and the experi-
mentation can be terminated.

50 In basic form, L* can start with the one state hypothesis
automaton that treats all words over the considered alphabet
(of elementary observations) alike and can refine this automa-
ton on the basis of query results iterating two steps. Here, the
dual way of how L* characterizes (and distinguishes) states

55 can be central:
* from below, by words reaching the states. This charac-

terization may be too fine, as different words can lead to the
same state.

* from above, by future behavior with respect to a dynami-
60 cally increasing set of words. These future behaviors can be

essentially bit vectors, where a `1' means that the correspond-
ing word of the set is guaranteed to lead to an accepting state
and a `0' captures the complement. This characterization can
be too coarse, as the considered sets of words may typically be

65 rather small.
The second characterization may directly define the

hypothesis automata: each occurring bit vector corresponds

US 7,668,796 B2
7

to one state in the hypothesis automaton. The initial hypoth-
esis automaton may be characterized by the outcome of the
membership query for the empty observation. Thus, it can
accept any word in case the empty word is in the language,
and no state otherwise. The learning procedure can iteratively
establish local consistency after which the learning procedure
can check for global consistency.

In regards to local consistency, the first step (also referred
to as automatic model completion) can again iterate two
phases: one for checking whether the constructed automaton
is closed under the one-step transitions, i.e., each transition
from each state of the hypothesis automaton ends in a well
defined state of this very automaton. And another phase for
checking consistency according to the bit vectors character-
izing the future behavior as explained above, i.e., whether all
reaching words that have an identical characterization from
above also possess the same one step transitions. If this is not
the case, a distinguishing transition may be taken as an addi-
tional distinguishing future in order to resolve the inconsis-
tency, i.e., the two reaching words with different transition
potential may no longer be considered to represent the same
state. For standard automata the characterization may be in
terms of bit vectors. This may, however, not be required for
the systems, method and apparatus disclosed herein, e.g. for
Mealy machines the characterization can be in term of vectors
of output sequences.

Inregards to global equivalence, after local consistency has
been established, an equivalence query can check whether the
language of the hypothesis automaton coincides with the
language of the target automaton. If this is true, the learning
procedure may successfully terminate. Otherwise, the
equivalence query may return a counterexample, i.e., a word
which distinguishes the hypothesis and the target automaton.
This counterexample may give rise to a new cycle of modi-
fying the hypothesis automaton and starting the next iteration.
In any practical attempt of learning legacy systems, equiva-
lence tests can only be approximated, but membership que-
ries can be often answered by testing.

FIG. 3 is a flowchart of a method 300 to generate a scenario
using automata techniques, according to an embodiment.
Method 300 is one embodiment of generating 202 at least one
scenario that can describe requirements of the system in ref-
erence to automata-learning resources described above in
FIG. 2. Method 300 may solve the need in the art to system-
atically complete partial system requirement specifications,
which in turn reduces system development time, reduces the
amount of testing required of a new system, and also
improves confidence that the system reflects the require-
ments.

Method 300 may be a method for requirements comple-
tion, which can be based on automatic (active) automata
learning. Method 300 may include initializing 302 a learning
algorithm or other automata learning resource with a set of
traces constituting the requirement specifications. The
automata learning processes may provide a more complete
requirement specification, which may solve the need in the
prior art to reduce the partiality of system requirements.

Method 300 may include constructing 304 a consistent
behavioral model by establishing a local consistency. Local
consistency is discussed in detail above in conjunction with
FIG. 1. Thus, a finite state behavioral model can be derived,
which may be an extrapolation of the given requirement
specification.

In some embodiments of method 300, a number of mem-
bership queries may be answered. Both establishing closure
of the model, as well as establishing consistency of the
abstraction of reaching words into states (i.e., of the charac-

8
terization described above), can be effected on the basis of
additional information about the intended/unknown system.
For standard automata, the characterization may be in terms
of bit vectors. This may, however, not be required for the

5 systems, method and apparatus disclosed herein, e.g. for
Mealy machines the characterization can be in term of vectors
of output sequences. Deterministic finite state machines of
membership queries are discussed in greater detail in FIGS.
15, 16 and 17 below.

10 FIG. 4 is a flowchart of a method 400 to validate/update a
system, according to an embodiment. Method 400 may
include generating 202 at least one scenario 108 that
describes requirements of the system in reference to
automata-learning resources 104 and generating 204 an

15 implementation such as a formal specification from the at
least one scenario.

Method 400 may also include analyzing 402 the formal
specification.

Thereafter, a determination 404 can be made as to whether
20 or not the analyzing 402 indicates that the formal specifica-

tion contains a flaw. If a flaw does exist, then the scenario can
be corrected 406 accordingly.

In some embodiments, the analyzing 402 can include
applying mathematical logic to the formal specification in

25 order to identify a presence or absence of mathematical prop-
erties of the formal specification. Mathematical properties of
the formal specification that can be determined by applying
mathematical logic to the formal specification can include, by
way of example:

so	
1) whether or not the formal specification implies a system

execution trace that includes a deadlock condition, and
2) whether or not the formal specification implies a system

execution trace that includes a livelock condition.
35 The above two properties can be domain independent. One

skilled in the art will note that there are many other possible
flaws that could be detected through the analysis of the model,
many, or even most, of which might be domain dependent. An
example of a domain dependent property would be repre-

40 sented by the operational principle that "closing a door that is
not open is not a valid action." This example would be appli-
cable in the domain of the Hubble Space Telescope on-orbit
repair.

Because in some embodiments the formal specification can
45 be provably equivalent to the scenario(s) by virtue of method

400, if a flaw is detected in the formal specification, the flaw
could be corrected by changing (correcting) the scenario(s).
Once the correction is made, then the corrected scenarios can
be processed by system 200 in FIG. 2 or method 500 in FIG.

50 5 to derive a new formal specification from the corrected
scenarios. According to at least one embodiment, the new
formal specification can be processed by method 400, and the
iterations of method 400 and method 500 can repeat until no
more flaws exist in the formal specification generated from

55 the scenarios, at which point the scenarios have no flaws
because the formal specification can be provably equivalent
to the scenarios from which the specification was derived.
Thus, iterations of methods 400 and 500 can provide verifi-
cation/validation of the scenarios.

60 Thereafter, the new formal specification can be used to
generate an implementation of the system.

FIG. 5 is a flowchart of a method to validate/update sce-
narios of a system, according to an embodiment. Method 500
may include generating 202 at least one scenario 108 that

65 describes requirements of the system in reference to
automata-learning resources 104 and thereafter translating
502 scenarios 108 into a script without human intervention.

US 7,668,796 B2
9

Thereafter, method 500 can include optionally analyzing
504 the formal model. The analyzing 504 can be a verifica-
tion/validation of the scenarios 108. In some embodiments,
the analyzing 504 determines various properties such as exist-
ence of omissions, deadlock, livelock, and race conditions in
the script, although one skilled in the art will know that
analyzing the formal model can determine other properties
not specifically listed, which are contemplated by this inven-
tion. In some embodiments, the analyzing 504 can provide a
mathematically sound analysis of the scenarios 108 in a gen-
eral format that doesn't require significant understanding of
the specific rules of the scenarios 108. Further, the analyzing
504 can warn developers of errors in the scenarios 108, such
as contradictions and inconsistencies, but equally impor-
tantly the analyzing 504 can highlight rules or sets of rules
that are underspecified or over-specified and need to be cor-
rected for the scenarios 108 to operate as intended. Thus, no
knowledge of the scenarios 108 may be required, but instead
significant analysis, verification, testing, simulation and
model checking of the scenarios 108 using customized tools
or existing tools and techniques can be provided.

Thereafter, in some embodiments, method 500 can include
translating 506 the formal specification to a script. Thus, in at
least one embodiment, the method 500 may provide a method
to convert scenarios to scripts without involvement from a
computer programmer.

In method 500, informal representations of requirements
for procedures/scripts that represent the operation of a system
can be mechanically converted to a mathematically sound
specification that can be analyzed for defects and used for
various transformations, including automatic translation into
executable form and automatic regeneration of procedures/
scripts into other notations/representations. In other embodi-
ments, the method disclosed herein can be used to automati-
cally reverse engineer existing procedures and scripts to
formal models from which the method can be used to produce
customer-readable representations of procedures/scripts or
machine-proces sable scripts in any of various scripting lan-
guages.

Mathematically sound techniques can be used to mechani-
cally translate an informal procedure/script requirement into
an equivalent formal model. The model can mechanically
(that is, with no manual intervention) be manipulated, exam-
ined, analyzed, verified, and used in a simulation.

FIG. 6 is a flowchart of a method 600 to generate a script
from scenarios using automata learning, according to an
embodiment. Method 600 can solve the need in the art to
generate scripts from requirements with neither the time
involved in manually writing the scripts, nor the mistakes that
can arise in manually writing the scenarios. The automata
learning processes implemented in method 600 may provide
a more complete requirement specification, which may solve
the need in the prior art to reduce the partiality of system
requirements.

Method 600 may include generating 202 at least one sce-
nario 108 that describes requirements of the system in refer-
ence to automata-learning resources 104 and thereafter
mechanically translating 602 each of a plurality of scenarios
to a plurality of formal specification segments. The transla-
tion can be done without human intervention. One embodi-
ment of translating 602 is shown in FIG. 7 below.

Thereafter, method 600 can include aggregating 604 the
plurality of formal specification segments into a single formal
model.

Subsequently, method 600 can include translating 606 the
single formal model to multiple scripts as output from trans-
lating 606. Thereafter, method 600 can include generating

10
608 a script from the scripts that were accepted from trans-
lating 606. Thus, method 600 can provide an embodiment of
a method to convert a script to an application system without
involvement from a computer programmer.

5 FIG. 7 is a flowchart of a method 700 to mechanically
translate each of a plurality of scenarios to a plurality of
formal specification segments, according to an embodiment.
Method 700 is one embodiment of translating 602 in FIG. 6.
As indicated, such translation can be accomplished without

to human intervention.
In some embodiments, the method 700 can include verify-

ing 702 the syntax of the plurality of scenarios. Thereafter,
method 700 can include mapping 704 the plurality of sce-

15
narios to a script.

In some embodiments, method 700 subsequently can also
include verifying 706 consistency of the formal specification.
In some embodiments, method 700 subsequently may also
include verifying 708 a lack of other problems in the formal

20 specification. One example of other problems could be
unreachable states in the process defined in the formal speci-
fication, although one skilled in the art will understand that
yet other problems are contemplated.

FIG. 8 is a flowchart of a method 800 to generate an
25 executable system from a scenario using automata learning,

according to an embodiment. Method 800 may solve the need
in the art to generate executable computer instructions from
requirements with neither the time involved in manually writ-
ing the executable computer instructions, nor the mistakes

30 that can arise therefrom. The automata learning processes
may provide a more complete requirement specification
which may solve the need in the prior art to reduce the par-
tiality of system requirements.

Method 800 may include generating 202 at least one sce-
35 nano 108 that describes requirements of the system in refer-

ence to automata-learning resources 104 and thereafter
method 800 may include pattern-matching 802 mechanically
each of a plurality of scenarios of the informal specification to
a plurality of process-based specification segments. In some

40 embodiments, the pattern-matching 802 may include infer-
ring the process-based specification segments from the sce-
narios.

In some embodiments, the process-based specification can
be process algebra notation. That embodiment may satisfy the

45 need in the art for an automated, mathematics-based process
for requirements validation that does not require large com-
putational facilities.

Thereafter, method 800 may include aggregating 804 the

50
plurality of process-based specification segments into a
single process-based specification model.

Subsequently, method 800 may include translating 806 the
single process-based specification model to instructions
encoded in the Java computer language or some other high-

55
level computer programming language. Thereafter, method
800 may include compiling 808 the instructions encoded in
the Java computer language into a file of executable instruc-
tions.

In some embodiments, method 800 may include generat-
60 ing the executable instructions, which can provide a method

to convert informal specifications to an application system
without involvement from a computer programmer.

FIG. 9 is a flowchart of a method 900 to translate mechani-
cally each of a plurality of requirements of the scenario(s) to

65 a plurality of process-based specification segments, accord-
ing to an embodiment. Method 900 is one embodiment of
pattern-matching 802 in FIG. 8.

US 7,668,796 B2
11
	

12
Method 900 may include verifying 902 the syntax of the	 can determine other properties not specifically listed, which

scenario(s). Thereafter, method 900 may include mapping 	 are contemplated in method 1100. In some embodiments, the
904 the scenario(s) to a process-based specification. 	 analyzing 1104 can provide a mathematically sound analysis

In some embodiments, method 900 subsequently also may	 of the scenarios 108 in a general format that doesn't require
include verifying 906 consistency of the process-based speci- 5 significant understanding of the specific rules of the scenarios
fication with the scenario(s). In some embodiments, method

	
108. Further, the analyzing 1104 can warn developers of

900 subsequently may also include verifying 908 a lack of
	

errors in the scenarios 108, such as contradictions and incon-
other problems in the process-based specification. One 	 sistencies, but equally importantly the analyzing 108 can
example of other problems may be unreachable states in the

	
highlight rules or sets of rules that are underspecified or

process defined in the process-based specification. 	 io over-specified and need to be corrected for the scenarios 108
FIG. 10 is a flowchart of a method 1000 to recursively/

	
to operate as intended. Thus, no knowledge of the scenarios

heuristically validate/update a system, according to an
	 108 may be required, but instead significant analysis, verifi-

embodiment. Method 1000 may solve the need in the prior art	 cation, testing, simulation and model checking of the sce-
to reduce errors in scenarios. 	 narios 108 using customized tools or existing tools and tech-

Method 1000 can include analyzing 1002 a scenario 102, 15 niques may be provided.
of the system. In some embodiments, the analyzing 1002 can

	
Thereafter, in some embodiments, method 1100 can

include applying mathematical logic to the scenario in order
	

include translating 1106 the formal specification to an imple-
to identify a presence or absence of mathematical properties 	 mentation 112. Thus, in at least one embodiment, the method
of the scenario. Mathematical properties of the scenario that

	
1100 can provide a method to convert scenarios to implemen-

can be determined by applying mathematical logic to the 20 tations without involvement from a computer programmer.
scenario can include, by way of example:

	
In method 1100, informal representations of requirements

1) whether or not the scenario implies a system execution
	

for implementations that represent the operation of a system
trace that includes a deadlock condition, and

	
can be mechanically converted to a mathematically sound

2) whether or not the scenario implies a system execution	 specification that can be analyzed for defects and used for
trace that includes a livelock condition. 	 25 various transformations, including automatic translation into

The above two properties can be domain independent. One 	 executable form and automatic regeneration of implementa-
skilled in the art will note that there are many other possible	 tions into other notations/representations. In other embodi-
flaws that could be detected through the analysis of the model, 	 ments, the method disclosed herein can be used to automati-
many or even most of which might be domain dependent. An 	 cally reverse engineer existing implementations to formal
example of a domain dependent property would be repre- so models from which the method can be used to produce cus-
sented by the operational principle that "closing a door that is 	 tomer-readable representations of implementations or
not open is not a valid action." This example would be appli- 	 machine-proces sable implementations in any of various lan-
cable in the domain of the Hubble Space Telescope on-orbit 	 guages.
repair.	 Mathematically sound techniques can be used to mechani-

Thereafter, a determination 1004 can be made as to 35 cally translate an informal scenario requirement into an
whether or not the analyzing 1002 indicates that the scenario 	 equivalent formal model. The model can be mechanically
contains a flaw. If a flaw does exist, then the scenarios can be

	
(that is, withno manual intervention) manipulated, examined,

corrected 1006 accordingly. Once the correction is made,	 analyzed, verified, and used in a simulation.
then the corrected scenarios can be processed by implemen-	 FIG. 12 is a flowchart of a method 1200 to generate a single
tation generator 110 in FIG. 1 or method 1100 in FIG. 11 to 40 formal specification from scenarios using automata learning,
derive a new implementation from the corrected scenarios.	 accordingto an embodiment. Method 1200 can solvetheneed
According to at least one embodiment, the new scenario can

	
in the art to generate scenarios from requirements with nei-

be reprocessed by method 1000, and the iterations of method
	

ther the time involved in manually writing the scenarios, nor
1100 and method 1000 can repeat until there are no more	 the mistakes that can arise in manually writing the scenarios.
flaws in the scenarios. Thus, iterations of methods 1100 and 45	 Method 1200 may include generating 202 at least one
1000 can provide verification/validation of the scenarios. 	 scenario 108 that describes requirements of the system in

In some embodiments, method 1000 may be implemented
	

reference to automata-learning resources 104, and thereafter
by the automata learning generator 106 in FIG.1 or as part of

	
method 1200 may include mechanically pattern-matching

generating 202 at least one scenario 108 in FIG. 2, in which
	

1202 domain knowledge to a plurality of formal specification
case method 1100 can generate at least one scenario in a 50 segments. The translation can be done without human inter-
recursive heuristic manner. 	 vention. One embodiment of pattern-matching 1202 is shown

FIG. 11 is a flowchart of a method to pattern-match sce- 	 in FIG. 13 below.
narios into a formal specification, analyze the formal speci- 	 Thereafter, method 1200 can include aggregating 1204 the
fication, and translate the formal specification into an imple-	 plurality of formal specification segments into a single formal
mentation, according to an embodiment.	 55 specification or model.

Method 1100 may include generating 202 at least one
	

FIG. 13 is a flowchart of a method 1300 to mechanically
scenario 108 that describes requirements of the system in	 pattern-match 1202 domain knowledge to a plurality of for-
reference to automata-learning resources 104 and thereafter 	 mal specification segments, according to an embodiment.
method 1100 may include pattern-matching 1102 scenario(s)

	
Method 1300 is one embodiment of pattern-matching 1202 in

108 into a formal specification or model without human inter- 6o FIG. 12. As indicated, such translation can be accomplished
vention. Thereafter, method 1100 can include analyzing 1104

	
without human intervention.

the formal specification or model. The analyzing 1104 can be
	

In some embodiments, the method 1300 can include veri-
a verification/validation of the scenarios 108. In some

	
fying 1302 the syntax of the one or more scenarios. Thereaf-

embodiments, the analyzing 1104 may determine various 	 ter, method 1300 can include mapping 1304 the one or more
properties such as existence of omissions, deadlock, livelock, 65 scenarios to a formal specification.
and race conditions in the formal specification, although one

	
In some embodiments, method 1300 subsequently can also

skilled in the art will know that analyzing the formal model
	

include verifying 1306 consistency of the formal specifica-

US 7,668,796 B2
13

tion. In some embodiments, method 1300 can also subse-
quently include verifying 1308 a lack of other problems in the
formal specification. One example of other problems can be
unreachable states in the process defined in the formal speci-
fication, although one skilled in the art will understand that
yet other problems are contemplated.

In some embodiments, methods 200-1300 can be imple-
mented as a computer data signal embodied in a carrier wave
that represents a sequence of instructions, which, when
executed by a processor, such as processor 1404 in FIG. 14,
cause the processor to perform the respective method. In other
embodiments, methods 200-1300 can be implemented as a
computer-accessible medium having executable instructions
capable of directing a processor, such as processor 1404 in
FIG. 14, to perform the respective method. In varying
embodiments, the medium can be a magnetic medium, an
electronic medium, an electromagnetic medium, a medium
involving configurations or spatial positioning of electrons,
ions, atoms, or molecules or aggregations of such particles, a
medium involving quantum mechanical entities, or an optical
medium. Other mediums will be readily apparent to one
skilled in the art and fall within the scope of this invention.

Hardware and Operating Environment

FIG. 14 is a block diagram of a hardware and operating
environment 1400 in which different embodiments can be
practiced. The description of FIG. 14 provides an overview of
computer hardware and a suitable computing environment in
conjunction with which some embodiments can be imple-
mented. Embodiments are described in terms of a computer
executing computer-executable instructions. However, some
embodiments can be implemented entirely in computer hard-
ware in which the computer-executable instructions are
implemented in read-only memory. Some embodiments can
also be implemented in client/server computing environ-
ments where remote devices that perform tasks are linked
through a communications network. Program modules canbe
located in both local and remote memory storage devices in a
distributed computing environment. Some embodiments can
also be at least partially implemented in a quantum mechani-
cal computing and communications environment.

Computer 1402 may include a processor 1404, commer-
cially available from Intel, Motorola, Cyrix and others. Com-
puter 1402 may also include random-access memory (RAM)
1406, read-only memory (ROM) 1408, and one or more mass
storage devices 1410, and a system bus 1412, that operatively
couples various system components to the processing unit
1404. The memory 1406, 1408, and mass storage devices,
1410, can be types of computer-accessible media. Mass stor-
age devices 1410 may be more specifically types of nonvola-
tile computer-accessible media and can include one or more
hard disk drives, floppy disk drives, optical disk drives, and
tape cartridge drives. The processor 1404 can execute com-
puter programs stored on the computer-accessible media.

Computer 1402 can be communicatively connected to the
Internet 1414 (or any communications network) via a com-
munication device 1416. Internet 1414 connectivity is well
known within the art. In one embodiment, a communication
device 1416 may be a modem that responds to communica-
tion drivers to connect to the Internet via what is known in the
art as a "dial-up connection." In another embodiment, a com-
munication device 1416 may be an Ethernet® or similar
hardware network card connected to a local-area network
(LAN) that itself is connected to the Internet via what is
known in the art as a "direct connection" (e.g., TI line, etc.).

14
A user can enter commands and information into the com-

puter 1402 through input devices such as a keyboard 1418 or
a pointing device 1420. The keyboard 1418 may permit entry
of textual information into computer 1402, as known within

5 the art, and embodiments are not limited to any particular type
of keyboard. Pointing device 1420 can permit the control of
the screen pointer provided by a graphical user interface
(GUI) of operating systems such as versions of Microsoft
Windows®. Embodiments are not limited to any particular

io pointing device 1420. Such pointing devices may include
mice, touchpads, trackballs, remote controls andpoint sticks.
Other input devices (not shown) can include a microphone,
joystick, game pad, gesture-recognition or expression recog-
nition devices, or the like.

15 In some embodiments, computer 1402 may be operatively
coupled to a display device 1422. Display device 1422 can be
connected to the system bus 1412. Display device 1422 can
permit the display of information, including computer, video
and other information, for viewing by a user of the computer.

20 Embodiments are not limited to any particular display device
1422. Such display devices may include cathode ray tube
(CRT) displays (monitors), as well as flat panel displays such
as liquid crystal displays (LCD's) or image and/or text pro-
jection systems or even holographic image generation

25 devices. In addition to a monitor, computers typically can
include other peripheral input/output devices such as printers
(not shown). Speakers 1424 and 1426 (or other audio device)
can provide audio output of signals. Speakers 1424 and 1426
may also be connected to the system bus 1412.

30 Computer 1402 may also include an operating system (not
shown) that is stored on the computer-accessible media RAM
1406, ROM 1408, and mass storage device 1410, and is and
executed by the processor 1404. Examples of operating sys-
tems may include Microsoft Windows®, Apple MacOS®,

35 Linux®, UNIX®. Examples are not limited to any particular
operating system, however, and the construction and use of
such operating systems are well known within the art.

Embodiments of computer 1402 are not limited to any type

40 of computer 1402. In varying embodiments, computer 1402
may comprise a PC-compatible computer, a MacOSO-com-
patible computer, a Linux®-compatible computer, or a
UNIX®-compatible computer. The construction and opera-
tion of such computers are well known within the art.

45 Computer 1402 can be operated using at least one operat-
ing system to provide a graphical user interface (GUI),
including a user-controllable pointer. Computer 1402 can
have at least one web browser application program executing
within at least one operating system, to permit users of com-

50 puter 1402 to access an intranet, extranet or Internet world-
wide-web pages as addressed by Universal Resource Locator
(URL) addresses. Examples of browser application programs
may include Netscape Navigator® and Microsoft Internet
Explorer®.

55 The computer 1402 can operate in a networked environ-
ment using logical connections to one or more remote com-
puters, such as remote computer 1428. These logical connec-
tions can be achieved by a communication device coupled to,
or a part of, the computer 1402. Embodiments are not limited

60 to a particular type of communications device. The remote
computer 1428 can be another computer, a server, a router, a
network PC, a client, a peer device or other common network
node. The logical connections depicted in FIG. 14 can include
a local-area network (LAN) 1430 and a wide-area network

65 (WAN) 1432. Such networking environments are common-
place in offices, enterprise-wide computer networks, intra-
nets, extranets and the Internet.

US 7,668,796 B2
15
	

16
When used in a LAN-networking environment, the com- 	 subsystems, like a set of identical storage cells, or a set of

puter 1402 andremote computer 1428 can be connected to the
	

identical autonomous robots, canprofit from a symbolic treat-
local network 1430 through network interfaces or adapters 	 ment of subsystems of the systems. The symbolic treatment
1434, which is one type of communications device 1416. 	 may not work on the individuals, but on the particular roles
Remote computer 1428 may also include a network device 5 played by some of the individuals during a particular execu-
1436. When used in a conventional WAN-networking envi- 	 tion trace; rather than speaking about an individual robot, the
ronment, the computer 1402 and remote computer 1428 can 	 symbolic treatment may speak about the first robot starting to
communicate with a WAN 1432 through modems (not

	
interact, or the third robot reaching a certain area. For systems

shown). The modem, which can be internal or external, may 	 with large sets of such identical subsystems, the symbolic
be connected to the system bus 1412. In a networked envi- 10 treatment can turn out to be a must.
ronment, program modules depicted relative to the computer

	
Temporal Requirement Specifications: Besides some typi-

1402, or portions thereof, can be stored in the remote com- 	 cal example runs, application experts usually are also able to
puter 1428.	 formulate many necessary safety conditions, on the basis of

Computer 1402 may also includes power supply 1438.	 required protocols, or the exclusion of catastrophic states. By
Each power supply can be a battery.	 15 adding such safety requirements in terms of temporal logics

to requirement specification, a large number of membership
Apparatus Embodiments 	 queries can be answered by use of model checking.

FIGS. 22-23 and 26-27 below describe how this technique
FIGS. 15, 16 and 17 show deterministic finite state 	 is embedded into the R2D2C approach.

machines with different characteristics. In FIG. 15,16 and 17, 20	 FIG. 18 is a block diagram of an environment 1800 similar
the top most state is illustrated as the start state of the diagram. 	 to that of FIG. 14, but with the addition of the automata
In these figures, the gray portions can depict accepting states 	 learning resource 104 that may be input to, or received by, an
and the black portions can depict non-accepting states. In 	 automata learning generator 106, and that correspond to some
some embodiments of method 300 above, a number of mem- 	 components in system 100, according to an embodiment.
bership queries can be answered. Both establishing closure of 25	 FIG. 19 is a block diagram of an apparatus 1900 to engineer
the model, as well as establishing consistency of the abstrac-	 a script or procedure from scenarios using an automata-leam-
tion of reaching words into states (i.e., of the characterization 	 ing generator, according to an embodiment. Apparatus 1900
described above), can be effected on the basis of additional 	 may solve the need in the art for an automated, generally
information about the intended/unknown system. For stan- 	 applicable way to verify that an implemented script is a prov-
dard automata the characterization can be made in terms of bit so ably correct implementation of a set of scenarios.
vectors. This is however not required for the systems, method

	
One embodiment of the apparatus 1900 may be a software

and apparatus disclosed herein, e.g. for Mealy machines the 	 development system that includes a data flow and processing
characterization is in term of vectors of output sequences. 	 points for the data. According to the disclosed embodiments,

The posed membership queries may directly hint at the 	 apparatus 1900 can convert scenarios into a script on which
places where the given requirement specification is partial. 35 model checking and other mathematics-based verifications
However, numerous such membership queries can constitute	 can then be performed.
a bottleneck of active learning, even in the case where the 	 Apparatus 1900 may include one or more scenarios 102
querying is fully automated. Thus, in some embodiments, the 	 and one or more automata learning resources 104 that may be
number of membership queries can be reduced on the basis of

	
input to or received by an automata learning generator 106.

orthogonally given expert knowledge about the intended/ 4o The automata learning generator 106 can generate another set
unknown system. The following three very general structural 	 of one or more scenarios 108.
criteria, prefix closure, independence of actions, and symme-	 In one embodiment, the scenarios 108 may be received by
try can be sufficient to reduce the number of membership 	 a translator 1904. The optional inference engine 1902 might
queries by several orders of magnitude. By complementing 	 be referenced by the translator 1904 when the scenarios 108
these optimizations with filters for membership queries based 45 are translated by the translator 1904 into a formal specifica-
on additional requirement specifications in terms of temporal

	
tion 1906. Subsequently, the formal specification 1906 may

properties, the required interaction can be reduced to a prac- 	 be translated by script translator 1910 into a script 1912 in
tical level.	 some appropriate scripting language. In some embodiments,

FIG. 15 is a state diagram of a prefix closed deterministic 	 no manual intervention in the translation is provided. Those
finite state machine 1500 of membership query, according to 50 skilled in the art will readily understand that other appropriate
an embodiment. A set of traces describing the potential runs 	 notations and/or languages exist that are within the scope of
of a reactive system can be by definition prefix-closed,	 this invention.
because a run of a system can only be observed with all of its	 In some embodiments, apparatus 1900 can include an ana-
prefixes. This general observation can leadto savings in terms 	 lyzer 1908 to determine various properties of the formal
of membership queries. 	 55 specification, such as the existence of omissions, deadlock,

FIG. 16 is a state diagram of independent actions determin-	 livelock, and race conditions, as well as other conditions, in
istic finite state machine 1600 of membership query, accord- 	 the formal specification 1906, although one skilled in the art
ing to an embodiment. Components of distributed systems	 will recognize that other additional properties can be deter-
can typically proceed independently to a large extent; a lot of 	 mined by the analyzer 1908. The analyzer 1908 can solve the
the individual actions may not depend on each other and can 6o need in the prior art to reduce errors.
therefore be executed in arbitrary order. This can provide 	 The terms "scripts" and "procedures" can be used inter-
completion of the inferred model by adding all admissible 	 changeably. Scripts can encompass not only instructions
reshufflings. Depending on the nature of considered systems, 	 written in programming languages (such as Python, awk, etc.,
this optimization can have a major impact. 	 as described) but also in languages for physical (electrome-

FIG. 17 is a state diagram of a symmetric action determin- 65 chanical) devices and even in constrained natural language
istic finite state machine 1700 of membership query, accord- 	 instructions or steps or checklists to be carried out by human
ing to an embodiment. Systems comprising sets of identical

	
beings such as an astronaut.

US 7,668,796 B2
17
	

18
Scripting languages are computer programming languages 	 of system programs. Many of these languages' interpreters

initially used only for simple, repeated actions. The name
	

double as command-line interfaces, such as the Unix shell or
"scripting language" comes from a written script such as a	 the MS-DOS COMMAND.COM . Others, such as Apple-
screenplay, where dialog is repeated verbatim for every per- 	 Script, add scripting capability to computing environments
formance. Early script languages were often called batch 5 lacking a command-line interface. Examples of job control
languages or j ob control languages. A script is typically inter- 	 scripting languages and shells include AppleScript, ARexx
preted rather than compiled, but not always. Scripting lan-	 (Amiga Rexx), bash, csh, DCL, 4NT, JCL, ksh, MS-DOS
guages are also known as scripting programming languages

	
batch, Windows PowerShell, REXX, sh, and Winbatch

or script languages.	 In regards to macro scripting languages, with the advent of
Many such languages are quite sophisticated and have been io graphical user interfaces came a specialized kind of scripting

used to write elaborate programs, which are often still called
	

language for controlling a computer. These languages, usu-
scripts even thoughthe applications of scripts are well beyond

	
ally called Macro languages, interact with the same graphic

automating simple computer tasks. A script language can be	 windows, menus, buttons and such that a person does. Macro
found at almost every level of a computer system. Besides

	
language scripts are typically used to automate repetitive

being found at the level of the operating system, scripting 15 actions or configure a standard state. Macro language scripts
languages appear in computer games, web applications, word

	
can be used to control any application running on a GUI-

processing documents, network software and more. Scripting
	

based computer, but in practice the support for such lan-
languages favor rapid development over efficiency of execu- 	 guages depends on the application and operating system.
tion, scripting languages are often implemented with inter- 	 Examples of macro scripting languages include AutoHotkey,
preters rather than compilers, and scripting languages are 20 Autolt, and Expect.
effective in communication with program components writ- 	 In regards to application-specific scripting languages,
ten in other languages. 	 many large application programs include an idiomatic script-

Many scripting languages emerged as tools for executing
	

ing language tailored to the needs of the application user.
one-off tasks, particularly in system administration. One way

	
Likewise, many computer game systems use a custom script-

of looking at scripts is as "glue" that puts several components 25 ing language to express the programmed actions of non-
together; thus scripts are widely used for creating graphical

	
player characters and the game environment. Languages of

user interfaces or executing a series of commands that might
	

this sort are designed for a single application and, while
otherwise have to be entered interactively through keyboard

	
application-specific scripting languages can superficially

at the command prompt. The operating system usually offers 	 resemble a specific general-purpose language (e.g. QuakeC,
some type of scripting language by default, widely known as 30 modeled after C), application-specific scripting languages
a shell script language.	 have custom features which distinguish the application- spe-

Scripts are typically stored only in plain text form (as 	 cific scripting languages. Examples of application-specific
ASCII) and interpreted or compiled each time prior to being	 scripting languages include, Action Code Script, Action-
invoked.	 Script, AutoLISP, BlobbieScript [1], Emacs Lisp, HyperTalk,

Some scripting languages are designed for a specific 35 IRC script, Lingo, Cana Embedded Language, mIRC script,
domain, but often writing more general programs is possible

	
NWscript, QuakeC, UnrealScript, Visual Basic forApplica-

in scripting languages that are designed for specific domains.	 tions, VBScript, and ZZT-oop.
In many large-scale projects, a scripting language and a lower

	
In regards to web programming scripting languages, an

level programming language are used together, each lending
	

important type of application-specific scripting language is
its particular strengths to solve specific problems. Scripting 40 one used to provide custom functionality to internet web
languages are often designed for interactive use, having many	 pages. Web programming scripting languages are specialized
commands that can execute individually, and often have very

	
for Internet communication and use web browsers as a user

high level operations (for example, in the classic UNIX shell
	

interface. However, most modern web programming script-
(sh)), most operations are programs. 	 ing languages are powerful enough for general-purpose pro-

Such high level commands simplify the process of writing 45 gramming. Examples of web programming scripting lan-
code. Programming features such as automatic memory man- 	 guage include ColdFusion (Application Server), Lasso,
agement and bounds checking can be taken for granted. In a

	
Miva, and SMX.

`lower level' or non-scripting language, managing memory
	

In regards to text processing scripting languages, the pro-
and variables and creating data structures tends to consume	 cessing of text-based records is one of the oldest uses of
more programmer effort and lines of code to complete a given 50 scripting languages. Many text processing languages, such as
task. In some situations writing computer instructions in low	 awk and PERL, were originally designed to aid system
level code is well worth the additional effort of the resulting	 administrators in automating tasks that involved Unix text-
fine-grained control. The scripter typically has less flexibility

	
based configuration and log files. PERL is a special case

to optimize a program for speed or to conserve memory. 	 originally intended as a report-generation language, PERL
For the reasons noted above, programming in a scripting 55 has grown into a full-fledged applications language in its own

language is usually a faster process, and script files are typi- 	 right. Examples of text processing scripting languages
cally much smaller than programs with equivalent function- 	 include awk, PERL, sed and XSLT.
ality in conventional programming languages such as C. 	 In regards to general-purpose dynamic scripting lan-

Scripting languages generally fall into eight primary cat-	 guages, some languages, such as PERL, began as scripting
egories: Job control languages and shells, macro languages, 60 languages but developed into programming languages suit-
application-specific languages, web programming lan-	 able for broader purposes. Other similar languages fre-
guages, text processing languages, general-purpose dynamic 	 quently interpreted, memory-managed, and dynamic have
languages, extension/embeddable languages, and extension/

	
been described as "scripting languages" for these similarities,

embeddable languages. 	 even if general-purpose dynamic scripting languages are
In regards to job control scripting languages and shells, a 65 more commonly used for applications programming.

major class of scripting languages has grown out of the auto- 	 Examples of general-purpose dynamic scripting languages
mation of job control starting and controlling the behavior

	
include APL, Dylan, Groovy, MUMPS (M), newLISP, PERL,

US 7,668,796 B2
19
	

20
	PHP, Python, Ruby, Scheme, Smalltalk, SuperCard, and Tool

	
the changes and validation will ripple through the entire sys-

	

command language (TCL). TCL was created as an extension	 tem without human intervention when apparatus 1900 oper-

	

language but has come to be used more frequently as a general
	

ates. This also allows the possibility of cost effectively devel-

	

purpose language in roles similar to Python, PERL, and Ruby. 	 oping competing designs for a product and implementing
In regards to extension/embeddable languages, a small 5 each to determine the best one.

	

number of languages have been designed for the purpose of
	

Thus, in regards to scripts and complex procedures, auto-

	

replacing application-specific scripting languages, by being	 matic code generation of apparatus 1900 can generate proce-

	

embeddable in application programs. The application pro- 	 dures/scripts in a suitable scripting language or device control

	

grammer (working in C or another systems language)
	

language (such as for a robot) that would provide the proce-
includes "hooks" where the scripting language can control io dures, once validated, to be automatically transformed into an

	

the application. These languages serve the same purpose as
	

implementation. Additionally, apparatus 1900 can be used to

	

application-specific extension languages, but with the advan-	 "reverse engineer" existing procedures/scripts so that the

	

tage of allowing some transfer of skills from application to	 existing procedures/scripts can be analyzed and corrected and

	

application. Examples of extension/embeddable script lan- 	 recast in a format and form that can be more easily under-
guages include Ch (C/C++ interpreter), ECMAScript a.k.a. 15 stood. Apparatus 1900 also can be used to reverse engineer

	

DMDScript, JavaScript, JScript, GameMonkeyScript, Guile,	 multiple existing procedures/scripts (even written in different

	

ICI, Squirrel, Lua, TCT, and REALbasic Script (RBScript). 	 languages) to a single formal model by which the procedures/

	

JavaScript began as and primarily still is a language for 	 scripts are combined, analyzed for conflicts, and regenerated

	

scripting inside of web browsers, however, the standardiza- 	 as a single procedure/script (in the same or a different proce-
tion of the language as ECMAScript has made JavaScript 2o dure/scripting language).

	

widely adopted as a general purpose embeddable language.	 Some embodiments of apparatus 1900 can operate in a

	

Other scripting languages include BeanShell (scripting for 	 multi-processing, multi-threaded operating environment on a

	

Java), CobolScript, Escapade (server side scripting), Eupho- 	 computer, such as the computer 1402 illustrated in FIG. 14.
	ria, F-Script, Ferite, Groovy, Gui4CIi, To, KiXtart, Mondrian, 	 While the apparatus 1900 is not limited to any particular

Object REXX, Pike, Pliant, REBOL, ScriptBasic, Shorthand 25 scenarios 108, inference engine 1902, translator 1904, formal

	

Language, Simkin, Sleep, StepTalk, and Visual DialogScript. 	 specification 1906, analyzer 1908, script translator 1910 and

	

In some embodiments, the script 1912 can be mathemati- 	 script 1912, for sake of clarity, embodiments of simplified

	

cally and provably equivalent to the scenarios 108. Math-	 scenarios 108, inference engine 1902, translator 1904, formal

	

ematically equivalent does not necessarily mean mathemati- 	 specification 1906, analyzer 1908, script translator 1910 and
cally equal. Mathematical equivalence ofA and B means that so script 1912 are described.

	

A implies B and B implies A. Note that the script 1912 of
	

In some embodiments, the apparatus 1900 may be a soft-

	

some embodiments is mathematically equivalent to, rather 	 ware development system that can include a data flow and
than necessarily equal to, the scenarios 108. 	 processing points for the data. Apparatus 1900 can be repre-

	

In some embodiments, the formal specification 1906 can 	 sentative of (i) computer applications and electrical engineer-
be a process-based specification, such as process algebra 35 ing applications such as chip design and other electrical cir-

	

encoded notation. The process algebra encoded notation can 	 cuit design, (ii) business management applications in areas

	

be a mathematically notated form. This embodiment can sat-	 such as workflow analysis, (iii) artificial intelligence applica-

	

isfy the need in the art for an automated, mathematics-based
	

tions in areas such as knowledge-based systems and agent-

	

process forrequirements validation that does not require large
	

based systems, (iv) highly parallel and highly-distributed
computational facilities.	 4o applications involving computer command and control and

	

In some embodiments, the scenarios 108 of apparatus 1900
	

computer-based monitoring, and (v) any other area involving

	

can specify allowed situations, events and/or results of a 	 process, sequence or algorithm design. One skilled in the art,

	

software system. In that sense, the scenarios 108 can provide
	

however, will recognize that other applications can exist that
a very abstract specification of the software system.	 are within the purview of this invention. According to the

Some embodiments of apparatus 1900 can be operational 45 disclosed embodiments, apparatus 1900 can, without human

	

for a wide variety of rules, computer instructions, computer
	

intervention, convert different types of specifications (such as

	

languages and applications; thus, apparatus 1900 may be	 natural language scenarios or descriptions which are effec-

	

characterized as generally applicable. Such applications can 	 tively pre-processed scenarios) into process-based scripts on

	

include, without limitation, space satellite control systems, 	 which model checking and other mathematics-based verifi-
distributed software systems, sensor networks, robot opera- 50 cations are performed, and then optionally convert the script

	

tions, complex scripts for spacecraft integration and testing, 	 into code.

	

chemical plant operation and control, autonomous systems,	 Apparatus 1900 can be operational for a wide variety of

	

electrical engineering applications such as chip design and
	

languages for expressing requirements, thus apparatus 1900

	

other electrical circuit design, business management applica- 	 may be characterized as generally applicable. Such applica-
tions in areas such as workflow analysis, artificial intelligence 55 tions may include, without limitation, distributed software

	

applications in areas such as knowledge-based systems and
	

systems, sensor networks, robot operation, complex scripts

	

agent-based systems, highly parallel and highly-distributed
	

for spacecraft integration and testing, chemical plant opera-

	

applications involving computer command and control and
	

tion and control, and autonomous systems. One skilled in the

	

computer-based monitoring, and any other area involving 	 art will understand that these applications are cited by way of
process, sequence or algorithm design. Hence, one skilled in 60 example and that other applications can fall within the scope

	

the art will recognize that any number of other applications 	 of the invention.
not listed can fall within the scope of this invention. 	 According to some embodiments, a scenario can be natural

	

Some embodiments of the apparatus 1900 can provide
	

language text (or a combination of any, such as possibly

	

mechanical or automatic generation of the script 1912, in 	 graphical, representations of sequential steps or events) that
which human intervention is not required. In at least one 65 describes the software's actions in response to incoming data

	

embodiment of the apparatus 1900, the generated application	 and the internal goals of the software. Scenarios also can

	

can be updated by changing the scenarios 108, in which case
	

describe communication protocols between systems and

US 7,668,796 B2
21

between the components within the systems. Scenarios also
can be known as use cases. A scenario can describe one or
more potential executions of a system, such as describing
what happens in a particular situation and what range of
behaviors is expected from or omitted by the system under 5

various conditions.
Natural language scenarios can be constructed in terms of

individual scenarios written in a structured natural language.
Different scenarios can be written by different stakeholders of
the system, corresponding to the different views the stake- io
holders can have of how the system will perform, including
alternative views corresponding to higher or lower levels of
abstraction. Natural language scenarios can be generated by a
user with or without mechanical or computer aid. Such a set
of natural language scenarios can provide the descriptions of 15

actions that occur as the software executes. Some of these
actions can be explicit and required, while others can be due
to errors arising or as a result of adapting to changing condi-
tions as the system executes.

For example, if the system involves commanding space 20

satellites, scenarios for that system can include sending com-
mands to the satellites and processing data received in
response to the commands. Natural language scenarios, in
some embodiments, would be specific to the technology or
application domain to which the natural language scenarios 25

are applied. A fully automated general purpose approach
covering all domains may be technically prohibitive to imple-
ment in a way that is both complete and consistent.

To ensure consistency, the domain of application can often
be purpose-specific. For example, scenarios for satellite Sys- 30

tems can not be applicable as scenarios for systems that
manufacture agricultural chemicals.

Script Implementation

22
will recognize that other additional properties can be deter-
mined by the analyzer 1908. The analyzer 1908 may solve the
need in the prior art to reduce errors.

In some embodiments, a reverse script translator 2004 can
receive the script 1912 and generate a formal specification.
The output of the reverse script translator 2004 may be a
different formal specification than formal specification 1906.
There can be some small differences between the formal
specification generated by reverse script translator 2004 and
formal specification 1906, but the formal specifications gen-
erated by the reverse script translator 2004 can be substan-
tially functionally equivalent to the formal specification
1906.

Apparatus 2000 can operate for a wide variety of languages
and applications, and thus apparatus 2000 may be character-
ized as generally applicable. Such applications can include,
without limitation, distributed software systems, sensor net-
works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems, but those
skilled in the art will understand that other applications are
contemplated.

Apparatus 2000 components such as the translator 1904,
script translator 1910, the analyzer 1908, and the reverse
script translator 2004 can be embodied as computer hardware
circuitry or as a computer-readable program, or a combina-
tion of both, such as shown in FIG. 21. In another embodi-
ment, apparatus 2000 can be implemented in an application
service provider (ASP) system.

FIG. 21 is a block diagram of an environment 2100, similar
to that of FIG. 14, but with the addition of the script translator
1910, the analyzer 1908 and the reverse script translator 2004
that correspond to some of apparatus 2000.

R2D2C Implementations
35

Referring to FIGS. 20 and 21, a particular scripting lan- 	 FIGS. 22-23 describe particular R2D2C implementations.
guage implementation 2000 is described in conjunction with

	
The R2D2C implementations may solve the need in the art to

the system overview in FIG. 19 and the methods described in
	

develop system at higher levels of abstraction. The R2D2C
conjunction with FIGS. 2-13.	 implementations can also convert the scenarios into a formal

FIG. 20 is a block diagram of a particular implementation 40 model or specification that can be analyzed for concurrency-
of an apparatus to translate scenarios to a script and reverse 	 related errors and consistency and completeness, as well as
engineer a script into a formal specification using an

	
domain-specific errors.

automata-learning generator, according to an embodiment.	 The systems, method and apparatus described in FIGS.
Apparatus 2000 can solve the need in the art for an automated,	 22-23 may enhance the scenarios input to the R2D2C
generally applicable way to verify that implemented scripts 45 approach by using automata learning to generate other pos-
are a provably correct implementation of a scenario(s). 	 sible scenarios that can be used to make the set of scenarios

Apparatus 2000 may include one or more scenarios 102
	

more "complete." Amore complete set of scenarios can result
and one or more automata learning resources 104 that are

	
in a better formal model and enhance the results of the R2D2C

input to or received by an automata learning generator 106.	 process. The systems, method and apparatus described in
The automata learning generator 106 can generate another set 50 FIGS. 22-23 can also be used with UML use cases to enhance
of one or more scenarios 108. 	 the set of use cases that are used in specifying an application.

Apparatus 2000 can include a translator 1904 that gener-	 FIG. 22 is a block diagram of a particular R2D2C imple-
ates a formal specification 1906 from the laws of concurrency 	 mentation of an apparatus 2200 to generate a high-level com-
2002 and the scenario(s) 108 in reference to the optional 	 puter source code program from scenario(s) using an
inference engine 1902. 	 55 automata-learning generator, according to an embodiment.

Subsequently, the formal specification 1906 may be trans-	 Apparatus 2200 may solve the need in the art for an auto-
lated by script translator 1910 into a script 1912 in some 	 mated, generally applicable means to produce a system that is
appropriate scripting language. In some embodiments, no 	 a provably correct implementation of one or more policies.
manual intervention in the translation may be provided.	 One approach to requirements-based programming can be
Those skilled in the art will readily understand that other 6o requirements-to-design-to-code (R2D2C), which provides a
appropriate notations and/or languages exist that are within 	 mathematically traceable round-trip engineering approach to
the scope of this invention.	 system development. In R2D2C, engineers (or others) can

In some embodiments, apparatus 2000 can include an ana-	 write specifications as scenarios in constrained (domain-spe-
lyzer 1908 to determine various properties of the formal

	
cific) natural language, or in a range of other notations (in-

specification, such as the existence of omissions, deadlock, 65 cluding UML use cases), which can be integrated to derive a
livelock, and race conditions, as well as other conditions, in

	
formal model or specification that can be guaranteed to be

the formal specification 1906, although one skilled in the art 	 equivalent to the requirements stated at the outset, and which

US 7,668,796 B2
23

will subsequently be used as a basis for code generation. The
formal model can be expressed using a variety of formal
methods such as CSP (Hoare's language of Communicating
Sequential Processes). The R2D2C approach can generate a
formal model with automatic reverse engineering.

R2D2C can be called unique in that the methodology
allows for full formal development from the outset, and main-
tains mathematical soundness through all phases of the devel-
opment process, from requirements through to automatic
code generation. Method 2200 can also be used for reverse
engineering, that is, in retrieving models and formal specifi-
cations from existing code. R2D2C can also be used to "para-
phrase" (in natural language, etc.) formal descriptions of
existing systems. This approach is not limited to generating
high-level code. R2D2C can also be used to generate business
processes and procedures, and to generate instructions for
robotic devices, for example devices to be used on the Hubble
Robotic Servicing Mission (HRSM). R2D2C can also be used
as a basis for an expert system verification tool, and as a way
of capturing domain knowledge for expert systems, and for
generating policies from requirements.

The R2D2C approach can involve a number of phases. The
following describes some of these phases. The process Dl
thru D5 can illustrate the development approach which is
suitable for various types of analysis and investigation, and
serve as the basis for fully formal implementations as well as
for use in automated test case generation, for example.

Dl Scenarios Capture: Engineers, end users, and others
can write scenarios describing intended system operation.
The input scenarios can be represented in a constrained natu-
ral language using a syntax-directed editor, or can be repre-
sented in other textual or graphical forms.

D2 Traces Generation: Traces and sequences of atomic
events can be derived from the scenarios defined in phase Dl.

D3 Model Inference: A formal model, or formal specifica-
tion, expressed in CSP, can be inferred by an automatic theo-
rem prover, in this case, using the traces derived in phase D2.
A deep embedding of the laws of concurrency in the theorem
prover can provide sufficient knowledge of concurrency and
of CSP to perform the inference.

D4 Analysis: Based on the formal model, various analyses
can be performed, using currently available commercial or
public domain tools, and specialized tools that are planned for
development. Because of the nature of CSP, the model can be
analyzed at different levels of abstraction using a variety of
possible implementation environments.

D5 Code Generation: The techniques of automatic code
generation from a suitable model are reasonably well under-
stood. The present modeling approach may be suitable for the
application of existing code generation techniques, whether
using a tool specifically developed for the purpose, or existing
tools such as FDR, or converting to other notations suitable
for code generation (e.g., converting CSP to B and then using
the code generating capabilities of the B Toolkit).

In some embodiments, an exemplary system for automatic
control of ground stations of overhead satellites may include
both autonomous and autonomic properties and may operate
by having a community of distributed autonomous software
modules work cooperatively based on policies to perform the
functions previously undertaken by human operators using
traditional software tools, such as orbit generators and com-
mand sequence planners. In the following example, the Pager
agent and a mapping from natural language descriptions
through to the CSP model can be used to generate code.

Based on defined policies, the Pager agent can send pages
to engineers and controllers when there is a spacecraft
anomaly. For example, the Pager agent can receive requests

24
from the user interface agent that no analyst is logged on, so
the Pager agent can get paging information from the Database
agent and can page an appropriate analyst, and, when
instructed by the user interface agent, stops paging the ana-

5 lyst. These policies can be stated as follows:
When the Pager agent receives a request from the User

Interface agent, the Pager agent can send a request to the
Database agent for an analyst's pager information and put the

10
message in a list of requests to the Database agent. When the
Pager agent receives a pager number from the Database agent,
then the Pager agent can remove the message from the paging
queue, send a message to the analyst's pager and add the
analyst to the list of paged people. When the Pager agent

15 receives a message from the User Interface agent to stop
paging a particular analyst, the Pager agent can send a stop-
paging command to the analyst's pager and remove the ana-
lyst from the paged list. When the Pager agent receives
another kind of message, a reply can be sent to the sender that

20 the message was not recognized.
The above policies could then be translated into CSP. The

following is a partial CSP description of the Pager agent:

25	 PAGER_ BUSdbwaiting,paged = pager. Iin?msg-
case

GET USER INFOdbwaiting,paged,pagee,text
if msg = (STARTPAGING, specialist, text)

BEGIN PAGING& waiting,paged,
in reply_ to id(msg),pager-num

30	 if msg = (RETURN DATA.pager num)
S TOPCONTACTdbwaiting,paged,pagee
if msg = (STOP PAGING, pagee)

pager.Iout!(head(msg), UNRECOGNIZED)
PAGER BUSdbwaiting,paged

otherwise
35

The above pseudo-language description states that the pro-
cess PAGER _BUS receives a message on its "Iin" channel
and stores the message in a variable called "msg". Depending

40 on the contents of the message, one of four different processes
can be executed based on the policies. If the message is of
type START _PAGING, then the GET_USER_INFO process
is called with parameters of the specialist to page (pagee) and
the text to send. If the message is of type RETURN _DATA

45 with a pagee's pager number, then the database has returned
a pager number and the BEGIN _PAGING process is executed
with a parameter containing the original message id (used as
a key to the db-waiting set) and the passed pager number. The
third type of message that the Pager agent might receive is one

50 of type STOP _PAGING. This message contains a request to
stop paging a particular specialist (stored in the pagee param-
eter). When this message is received, the STOP _PAGING
process is executed with the parameter of the specialist type.
If the Pager agent receives any other message than the above

55 three messages, an error message is returned to the sender of
the message (which is the first item of the list) stating that the
message is "UNRECOGNIZED. After this, the PAGER_
BUS process is again executed.

Some of the benefits of using R2D2C, and hence of using
6o Formal Requirements-Based Programming in system devel-

opment can include increasing assurance of system success
by ensuring completeness and consistency of requirements,
by ensuring that implementations are true to the require-
ments, by ensuring that automatically coded systems are bug-

65 free; and by ensuring that implementation behavior is as
expected. Another benefit may be decreased costs and sched-
ule impacts of ultra-high dependability systems through auto-

US 7,668,796 B2
25

mated development and yet another benefit may be decreased
re-engineering costs and delays.

Apparatus 2200 may include one or more scenarios 102
and one or more automata learning resources 104 that are
input to or received by an automata learning generator 106.
The automata learning generator 106 may generate another
set of one or more scenarios 108. Apparatus 2200 may also
include a set of laws of concurrency 2002.

The scenario(s)108, a set of laws of concurrency 2002 and
data from a theorem prover 2201 may be received by a direct
mechanical CSP translator 2202. The plurality of rules or
requirements of the scenario(s) 108 may be translated
mechanically to a CSP specification 2204 encoded in Hoare's
language of Communicating Sequential Processes (CSP).

In some embodiments, the system may include a CSP
specification analyzer 2206 to perform model verification/
checking and determine existence of omissions, deadlock,
livelock and race conditions in the CSP specification 2204. In
some embodiments, the CSP specification analyzer 2206 can
receive and transmit information from and to a visualization
tool 2208 that provides a way to modify the CSP specification
2204. In some embodiments, the CSP specification analyzer
2206 may receive and transmit information from and to a tool
2210 designed for CSP that provides a way to modify the CSP
specification 2204.

The CSP specification analyzer 2206 may generate a modi-
fied CSP specification 2204 that is in turn received by a code
translator 2214 or compiler to translate the plurality of formal
specification segments 306 to a set of instructions in a high-
level computer language program 2216, such as Java lan-
guage.

CSP specification analyzer 2206 may allow the user to
manipulate the formal specification 2204 in various ways.
The CSP specification analyzer 2206 can allow the user to
examine the system described by the scenario(s) 108, and to
manipulate it. The CSP specification 2204 can be analyzed to
highlight undesirable behavior, such as race conditions, and
to point out errors of omission in the scenario(s) 108. The CSP
specification analyzer 2206 may be an optional but useful
stage in the disclosed embodiments of the present invention.
If the CSP specification analyzer 2206 is not used, then the
formal specification 306 and the modified CSP specification
2204 may be identical. Hence, if the CSP specification ana-
lyzer 2206 is not used, then all references to the modified CSP
specification 2204 disclosedbelow may also apply to the CSP
specification 2204.

Apparatus 2200 may not include a requirements-comple-
tion component using temporal constraints. Alternatively, the
CSP translator 2202 (also known as a model inference com-
ponent) can be replaced by a requirements-completion com-
ponent, in which case, the analyzer 2206 and the code trans-
lator 2214 can operate on the model produced by the
requirements-completion component.

Apparatus 2200 may be operational for a wide variety of
policy languages and applications, and thus apparatus 2200
may be characterized as generally applicable. Such applica-
tions may include distributed software systems, sensor net-
works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems.

Apparatus 2200 components of the direct mechanical CSP
translator 2202, the CSP specification analyzer 2206, visual-
ization tool 2208, CSP tool 2210 and the code translator 2214
can be embodied as computer hardware circuitry or as a
computer-readable program, or a combination of both, such
as shown in FIG. 22. In another embodiment, apparatus 2200
can be implemented in an application service provider (ASP)
system.

26
FIG. 23 is a block diagram of an environment 2300 similar

to that of FIG. 14, but with the addition of the CSP translator
2202, the CSP specification analyzer 2206 and the code trans-
lator 2214 that correspondto some of apparatus 2200, accord-

s ing to an embodiment.
The apparatus of FIG. 22 and 23 may be applicable to the

development, maintenance, and verification of expert sys-
tems. Inparticular, the R2D2C methods and apparatus of FIG.
22 and FIG. 23 can verify an expert system used in the NASA

10 ground control center for the POLAR spacecraft, which can
perform multi-wavelength imaging of the Earth's aurora. The
POLAR ground control expert system has rules written in the
production system CLIPS for auto- mated "lights out" (un-
tended) operation of the spacecraft. A suitable translator from

15 CLIPS (rather than natural language) to CSP (or EzyCSP)
supports examination of existing expert system rule bases for
consistency and so forth. CLIPS rules can be generated from
CSP (or EzyCSP), similar to generating code in Java or C++,
which can provide a way of capturing expert knowledge, from

20 natural language description through to CLIPS rules, while
maintaining correctness.

The "code" generated by the systems, methods and proce-
dures described herein, particularly in FIG. 22 and FIG. 23
may not be specifically coded in a programming language. In

25 some embodiments, the systems, methods and procedures
herein can determine validity and correctness of procedures
for complex robotic assembly or repair tasks in space. More
specifically, the systems, methods and procedures described
herein can provide an additional way to validate procedures

30 from the Hubble Robotic Servicing Mission (HRSM), for
example, the procedures for replacement of cameras on the
Hubble Space Telescope (HST).

The systems, methods and procedures described herein
35 may be effective in test- based discovery of models of legacy-

communication systems. The tractability of observation
based model generation can be achieved through optimiza-
tions exploiting different kinds of expert knowledge in order
to drastically reduce the number of required queries, and thus

40
the testing effort. A thorough experimental analysis of the
second-order effects between such optimizations can maxi-
mize combined impact, and may provide development of a
mature toolset for experimentation. The systems, methods
and procedures described herein can be coherent with the

45 usual notions of conformance testing. In the specific R2D2C
context, the systems, methods and procedures described
herein can be applied to the combined approach to the speci-
fication of communication mechanisms on sensor networks,
expert systems and robotic operations.

50	
Pattern-Matching Implementations

Referring to FIGS. 24 and 25, a particular pattern-match-
ing embodiment 2400 is described in conjunction with the

55 system overview in FIG. 1 and the methods described in
conjunction with FIGS. 2-13.

FIG. 24 is a block diagram that provides an overview of an
apparatus 2400 to engineer an implementation from scenarios
using an automata-learning generator, according to an

60 embodiment. Apparatus 2400 may reduce system develop-
ment time, reduce the amount of testing required of a new
system, and improve confidence that the system reflects the
requirements.

One embodiment of the apparatus 2400 may be a software
65 development system that can include a data flow and process-

ing points for the data. According to the disclosed embodi-
ments, apparatus 2400 can convert scenarios into an imple-

US 7,668,796 B2
27

mentation on which model checking and other mathematics-
based verifications can then be performed.

Apparatus 2400 may include one or more scenarios 102
and one or more automata learning resources 104 that are
input to or received by an automata learning generator 106.
The automata learning generator 106 can generate another set
of one or more scenarios 108.

In one embodiment, the scenarios 108 may be received by
a pattern matcher 2402. The optional inference engine 1902
might be referenced by the pattern matcher 2402 when the
scenarios 108 are translated by the pattern matcher 2402 into
a formal specification 2404. Subsequently, the formal speci-
fication 2404 may be translated by a translator 2408 into an
implementation 2410 in some appropriate scripting language
or other implementation language. In some embodiments, no
manual intervention in the translation may be provided; thus,
apparatus 2400 can improve confidence that the systems
reflects the requirements which in turn can reduce the amount
of testing required of a new system and can reduce system
development time. Those skilled in the art will readily under-
stand that other appropriate notations and/or languages exist
that are within the scope of this invention.

In some embodiments, apparatus 2400 can include an ana-
lyzer 2406 to determine various properties of the formal
specification, such as the existence of omissions, deadlock,
livelock, and race conditions, as well as other conditions, in
the formal specification 2404, although one skilled in the art
will recognize that other additional properties can be deter-
mined by the analyzer 2406. The analyzer 2406 may solve the
need in the prior art to reduce errors.

In some embodiments, the implementation 2410 can be
mathematically and provably equivalent to the scenarios 108.
Mathematically equivalent does not necessarily mean math-
ematically equal. Mathematical equivalence of A and B
means that A implies B and B implies A. Note that the imple-
mentation 2410 of some embodiments may be mathemati-
cally equivalent to, rather than necessarily equal to, the sce-
narios 108.

In some embodiments, the formal specification 2404 can
be a process-based specification, such as process algebra
encoded notation. The process algebra encoded notation can
be a mathematically notated form. This embodiment can sat-
isfy the need in the art for an automated, mathematics-based
process forrequirements validation that does not require large
computational facilities.

In some embodiments, the scenarios 108 of apparatus 2400
can specify allowed situations, events and/or results of a
software system. In that sense, the scenarios 108 can provide
a very abstract specification of the software system.

Some embodiments of apparatus 2400 can be operational
for a wide variety of rules, computer instructions, computer
languages and applications; thus, apparatus 2400 may be
characterized as generally applicable. Such applications can
include, without limitation, space satellite control systems,
distributed software systems, sensor networks, robot opera-
tions, complex scripts for spacecraft integration and testing,
chemical plant operation and control, autonomous systems,
electrical engineering applications such as chip design and
other electrical circuit design, business management applica-
tions in areas such as workflow analysis, artificial intelligence
applications in areas such as knowledge-based systems and
agent-based systems, highly parallel and highly-distributed
applications involving computer command and control and
computer-based monitoring, and any other area involving
process, sequence or algorithm design. Hence, one skilled in
the art will recognize that any number of other applications
not listed can fall within the scope of this invention.

28
Some embodiments of the apparatus 2400 can provide

mechanical or automatic generation of the implementation
2410, in which human intervention is not required. In at least
one embodiment of the apparatus 2400, updating the gener-

5 ated application can be accomplished by making a change in
the scenarios 108, in which case the changes and validation
can ripple through the entire system without human interven-
tion when apparatus 2400 operates. This may also allow the
possibility of cost effectively developing competing designs

10 for a product and implementing each to determine the best
one.

Thus, in regards to implementations, automatic code gen-
eration of apparatus 2400 can generate an implementation in
suitable scripting language or device control language (such

is as for a robot) that would provide the procedures, once vali-
dated, to be automatically transformed into an implementa-
tion. Additionally, apparatus 2400 can be used to "reverse
engineer" existing implementation so that the implementa-
tion can be analyzed and corrected and recast in a format and

20 form that can be more easily understood. Apparatus 2400 also
can be used to reverse engineer multiple existing implemen-
tations (even written in different languages) to a single formal
model by which the implementations are combined, analyzed
for conflicts, and regenerated as a single implementation (in

25 the same or a different procedure/scripting language).
Some embodiments of apparatus 2400 may operate in a

multi-processing, multi-threaded operating environment on a
computer, such as the computer 1402 illustrated in FIG. 14.

30 While the apparatus 2400 may not be limited to any particular
scenarios 108, inference engine 1902, pattern matcher 2402,
formal specification 2404, analyzer 2406, translator 2408 and
implementation 2410, for sake of clarity, embodiments of
simplified scenarios 108, inference engine 1902, pattern

35 matcher 2402, formal specification 2404, analyzer 2406,
translator 2408 and an implementation 2410 are described.

In some embodiments, the apparatus 2400 may be a soft-
ware development system that can include a data flow and
processing points for the data. Apparatus 2400 can be repre-

40 sentative of (i) computer applications and electrical engineer-
ing applications such as chip design and other electrical cir-
cuit design, (ii) business management applications in areas
such as workflow analysis, (iii) artificial intelligence applica-
tions in areas such as knowledge-based systems and agent-

45 based systems, (iv) highly parallel and highly-distributed
applications involving computer command and control and
computer-based monitoring, and (v) any other area involving
process, sequence or algorithm design. One skilled in the art,
however, will recognize that other applications can exist that

50 are within the purview of this invention. According to the
disclosed embodiments, apparatus 2400 can, without human
intervention, convert different types of specifications (such as
natural language scenarios or descriptions which are effec-
tively pre-processed scenarios) into a formal specification on

55 which model checking and other mathematics-based verifi-
cations are performed, and then optionally translate the for-
mal specification into code or other implementation.

Apparatus 2400 can be operational for a wide variety of
languages for expressing requirements; thus, apparatus 2400

60 may be characterized as generally applicable. Such applica-
tions may include, without limitation, distributed software
systems, sensor networks, robot operation, complex scripts
for spacecraft integration and testing, chemical plant opera-
tion and control, and autonomous systems. One skilled in the

65 art will understand that these applications are cited byway of
example and that other applications can fall within the scope
of the invention.

US 7,668,796 B2
29

Apparatus 2400 components such as the pattern matcher
206, translator 2008, the analyzer 2006, and the reverse trans-
lator 2402 canbe embodied as computer hardware circuitry or
as a computer-readable program, or a combination of both,
such as shown in FIG. 25. In another embodiment, apparatus
2400 can be implemented in an application service provider
(ASP) system.

FIG. 25 is a block diagram of an environment 2500 similar
to that of FIG. 14, but with the addition of the translator 2408,
the analyzer 2406 and the reverse translator 2402 that corre-
spond to some of apparatus 2400.

R2D2C Pattern-Matching Implementations

Referring to FIG. 26, a particular apparatus 2600 is
described in conjunction with the system overview in FIG. 1.

FIG. 26 is a block diagram of a particular embodiment of an
apparatus 2600 to generate a high-level computer source code
program from scenario(s) using pattern-matching and
R2D2C using an automata-learning generator, according to
an embodiment. Apparatus 2600 may solve the need in the art
for an automated, generally applicable way to produce a
system that is a provably correct implementation of a scenario
108.

Apparatus 2600 may include one or more scenarios 102
and one or more automata learning resources 104 that are
input to or received by an automata learning generator 106.
The automata learning generator 106 may generate another
set of one or more scenarios 108.

The scenario(s)108, a set of laws of concurrency 2002 and
data from a theorem prover 2201 can be received by a direct
mechanical implementation pattern matcher 2602. The sce-
nario(s) 108 may be translated mechanically to an implemen-
tation 2604.

In some embodiments, the system may include an imple-
mentation analyzer 2606 to perform model verification/
checking and determine existence of omissions, deadlock,
livelock and race conditions in the implementation 2604. In
some embodiments, the implementation analyzer 2606 can
receive and transmit information from and to a visualization
tool 2608 that may provide a way to modify the implementa-
tion 2604. In some embodiments, the implementation ana-
lyzer 2606 can receive and transmits information from and to
a tool 2610 that may provide a way to modify the implemen-
tation 2604.

The implementation analyzer 2606 may generate a modi-
fied implementation 2612 that is in turn received by a code
translator 2614 or compiler to translate the plurality of pro-
cess-based specification segments 108 to a set of instructions
in a high-level computer language program 2616, such as
Java language.

The implementation analyzer 2606 may allow the user to
manipulate the implementation 2604 in various ways. The
implementation analyzer 2606 may allow the user to examine
the system described by the scenario(s) 102 and 108, and to
manipulate it. The implementation 2604 can be analyzed to
highlight undesirable behavior, such as race conditions, and
to point out errors of omission in the scenario(s) 108. The
implementation analyzer 2606 can be an optional but useful
stage in the disclosed embodiments of the present invention.
If the implementation analyzer 2606 is not used, then the
process-based specification 160 and the modified implemen-
tation 2612 can be identical. Hence, if the implementation
analyzer 2606 is not used, then all references to the modified
implementation 2612 disclosed below may also apply to the
implementation 2604.

30
Apparatus 2600 is operational for a wide variety of sce-

nario(s)108 languages and applications; thus, apparatus 2600
may be characterized as generally applicable. Such applica-
tions may include distributed software systems, sensor net-

t works, robot operation, complex scripts for spacecraft inte-
gration and testing, and autonomous systems.

Apparatus 2600 components of the direct mechanical
implementation pattern matcher 2602, the implementation
analyzer 2606, visualization tool 2608, tool 2610 and the

io code translator 2614 can be embodied as computer hardware
circuitry or as a computer-readable program, or a combina-
tion of both, such as shown in FIG. 26. In another embodi-
ment, apparatus 2600 may be implemented in an application
service provider (ASP) system.

15 FIG. 27 is a block diagram of a hardware and operating
environment in which a particular pattern-matching R2D2C
implementation of FIG. 26 is implemented, according to an
embodiment.

In still further embodiments, four optimizations may limit
20 the number of requireduser interactions, such as optimization

of user-given safety specification.
In computer-readable program embodiments, the pro-

grams can be structured in an object-orientation using an
obj ect-oriented language such as Java, Smalltalk or C++, and

25 the programs can be structured in a procedural-orientation
using a procedural language such as COBOL or C. The soft-
ware components may communicate in any of a number of
ways that are well-known to those skilled in the art, such as
application program interfaces (API) orinterprocess commu-

so nication techniques such as remote procedure call (RPC),
common object request broker architecture (CORBA), Com-
ponent Object Model (COM), Distributed Component Object
Model (DCOM), Distributed System Object Model (DSOM)
and Remote Method Invocation (RMI). The components can

35 execute on as few as one computer as in computer 1402 in
FIG. 14, or on at least as many computers as there are com-
ponents.

CONCLUSION
40

Systems, methods and apparatus are provided through
which in some embodiments, automata learning algorithms
and techniques may be implemented to generate a more com-
plete set of scenarios for requirements based programming.

45 In some embodiments, a CSP-based, syntax-oriented
model construction, which requires the support of a theorem
prover, may be complemented by model extrapolation, via
automata learning. This embodiment can support the system-
atic completion of the requirements, the nature of the require-

50 ment being partial, which can provide focus on the most
prominent scenarios. This embodiment may generalize
requirement skeletons by extrapolation and indicate by use of
automatically generated traces where the requirement speci-
fication is too loose and additional information is required.

55 In some embodiments, a R2D2C process may be imple-
mented to mechanically transform system requirements via
provably equivalent models to executable computer code. In
further embodiments, a CSP-based, syntax-oriented model
construction of the R2D2C method may be complemented

60 with a learning-based method to provide requirements
completion. Automatic (active) automata learning can sys-
tematically enrich requirement specifications posed in terms
of traces.

Systems, methods and apparatus described herein may
65 have many commercial applications such as the following:

(1) Business procedures, in a variety of domains, can be
analyzed, evaluated, improved, combined, verified, and auto-

US 7,668,796 B2
31

matically implemented in a programming language. (2) For-
mal modes can have been proposed for analyzing legal con-
tracts. However, legal experts are not likely to have the
required skills to develop such mathematical models. This
approach can enable legal contracts to be converted automati- 5

cally to a formal model and analyzed. (3) Procedures for
assembling (or disassembling) components in a factory, in
space, or elsewhere, whether performed by robots or humans,
are prone to error and "trial and error"; the approach disclosed
herein may eliminate the uncertainty and ensure that proce- 10

dures are correct. (4) There are a large number of implemen-
tations in the public domain, in particular in communications
networks and the bioinformatics industry; similarly NASA
(and other organizations) may have many existing implemen-
tations used for space mission test and integration. Most of 15

these implementations have little or no documentation, mean-
ing that the implementations cannot be used except by expla-
nations of the implementations, and hence reuse of the imple-
mentations. (5) Existing implementations can be combined
using thi s approach, and can be checked for incompatibilities, 20

etc. Then a single implementation can be generated to com-
bine the functionality of several implementations. This may
have major ramifications for bioinformatics, robotic assem-
bly and maintenance, integration and test, and other domains.

We claim:	 25

1. A computer-accessible medium having executable
instructions to generate a system, the executable instructions
capable of directing a processor to perform:

generating at least one scenario that describes require-
ments of the system in reference to automata-learning 30

resources, automata-learning resources being a system
interface that maps functions and structures the learning
process; and

generating at least one implementation from the at least
one scenario,	 35

such that the processor derives a system reflecting require-
ment specifications thereby reducing system develop-
ment time.

2. The computer-accessible medium of claim 1, wherein
the instructions includes instructions capable of directing a 40

processor to perform:
generating at least one scenario in a recursive heuristic

manner, the at least one scenario describing require-
ments of the system to using automata-learning
resources.	 45

3. The computer-accessible medium of claim 1, wherein
the instructions includes instructions capable of directing a
processor to perform:

pattern-matching the at least one scenario of the system to
at least one process-based specification segment. 	 50

4. The computer-accessible medium of claim 3, wherein
the instructions includes instructions capable of directing a
processor to perform:

pattern-matching the at least one scenario of the system to
a formal specification using an inference engine, the 55

inference engine iteratively applying a set of rules to a
set of data representing a problem to determine a solu-
tion to the problem by logical manipulation and analysis
of the data.

5. The computer-accessible medium of claim 4, the 60

medium further comprising executable instructions capable
of directing the processor to perform:

analyzing the formal specification, whereby analyzing
includes identifying at least one equivalent alternative
process-based specification and characterizing differ- 65

ences between the process-based specification and the at
least one alternative process-based specification,

32
wherein differences include the number of process,
deterministic behavior, and competition for resources.

6. The computer-accessible medium of claim 5, wherein
the instructions includes instructions capable of directing a
processor to perform:

applying mathematical logic to the formal specification in
order to identify a presence or absence of mathematical
properties of the scenario, wherein mathematical logic
operates through the instructions to reveal where pre-
scribed mathematical properties exist in the formal
specification of the scenario.

7. The computer-accessible medium of claim 6, the
medium further comprising executable instructions capable
of directing the processor to perform:

correcting the absence of the mathematical properties if the
mathematical properties are identified as absent in the
scenario.

8. The computer-accessible medium of claim 7, wherein
the mathematical properties of the formal specification
include

whether the formal specification implies a system execu-
tion trace that includes a deadlock condition, wherein a
deadlock condition is a condition in which two execut-
ing processes each wait for the other to finish;

whether the formal specification implies a system execu-
tion trace that includes a livelock condition, wherein a
livelock condition is a condition in which two executing
processes each wait for the other to finish, as their rela-
tive internal states change continually during execution
without progress being made by either process; and

whether the format specification implies a system execu-
tion trace that exhibits or does not exhibit a plurality of
other behaviors,

wherein a trace is a sequence of actions expressed as strings
representing a history of an execution of a process.

9. The computer-accessible medium of claim 4, wherein
the formal specification includes

a process algebra, wherein the process algebra is a member
of a diverse family of related approaches to formally
modeling concurrent systems that provide a tool for the
high-level description of interactions, communications,
and synchronizations between a collection of indepen-
dent agents or processes, along with algebraic laws that
allow process descriptions to be manipulated and ana-
lyzed, and permit formal reasoning about equivalences
between processes.

10. The computer-accessible medium of claim 9, wherein
the process algebra includes:

a language of Communicating Sequential Processes,
wherein Communicating Sequential Processes is a for-
mal language for describing patterns of interaction in
concurrent systems.

11. The computer-accessible medium of claim 1, wherein
the instructions include instructions capable of directing a
processor to perform:

translatingthe atleast one scenario ofthe system to a script,
wherein the system instructions automatically transform
the learned models into logically equivalent scripts
while preserving the full semantics, wherein the scripts
have the properties of the learned models.

12. The computer-accessible medium of claim 11, wherein
the instructions include instructions capable of directing a
processor to perform:

translatingthe atleast one scenario ofthe system to a script,
without the use of an automated inference engine.

US 7,668,796 B2
33
	

34
13. The computer-accessible medium of claim 11, wherein

	
23. The computer-accessible medium of claim 11, the

	

the instructions further comprise instructions capable of
	

medium further comprising executable instructions capable
directing a processor to perform:	 of directing the processor to perform:

	

translating the at least one scenario of the system to a script
	

translating the script to a formal model, wherein translating
using an inference engine. 	 5	 the script to a formal model includes using correctness

14. The computer-accessible medium of claim 11, wherein 	 preserving transformations of the scripts or an inference

	

the instructions include instructions capable of directing a 	 engine; and
processor to perform:	 translating the formal model to at least one scenario,

	

translating the at least one scenario of the system to a 	 wherein the formal model is used to extract one or more
formal specification using an inference engine; and

	
io	 scenarios by applying the Laws of Concurrency.

translating the formal specification to the script. 	 24. A computer-accessible medium having executable
15. The computer-accessible medium of claim 11, the

	
instructions to generate a system from scenarios, the execut-

	

medium further comprising executable instructions capable 	 able instructions capable of directing a processor to perform:
of directing the processor to perform:	 generating a plurality of substantially complete scenarios

	

analyzing the formal specification, whereby analyzing 15	 from a plurality of less than substantially complete sce-

	

includes identifying at least one equivalent alternative	 narios using automata learning processes;

	

process-based specification and characterizing differ- 	 pattern-matching the plurality of substantially complete

	

ences between the process-based specification and the at 	 scenarios to a formal specification, whereby pattern-

	

least one alternative process-based specification, 	 matching includes checking for the presence of the con-

	

wherein differences include the number of processes, 20	 stituents of a given pattern to test whether things have

	

deterministic behavior, and competition for resources. 	 desired structure, to find relevant structure, to retrieve
16. The computer-accessible medium of claim 15, wherein 	 aligning parts, or to substitute a matching part; and

	

the instructions include instructions capable of directing a 	 translating the formal specification to a process-based
processor to perform:	 specification implementing the system,

	

applying mathematical logic to the format specification in 25	 such that the processor generates a system without knowl-

	

order to identify a presence or absence of mathematical
	

edge of scenarios and without human intervention.

	

properties of the scenario, wherein mathematical logic
	

25. The computer-accessible medium of claim 24, wherein

	

operates through the instructions to reveal where pre- 	 the instructions include instructions capable of directing a

	

scribed mathematical properties exist in the formal
	

processor to perform:
specification of the scenario. 	 so	 verifying the syntax of the scenarios; and

17. The computer-accessible medium of claim 16, the 	 mapping the plurality of substantially complete scenarios

	

medium further comprising executable instructions capable 	 to a plurality of formal specification segments.
of directing the processor to perform:

	 26. The computer-accessible medium of claim 24, wherein

	

correcting the absence of the mathematical properties if the 	 the instructions include instructions capable of directing a
mathematical properties are identified as absent in the 35 processor to perform:

	

scenario, wherein the learning process incorporates	 verifying consistency of the format specification.

	

information about the absence of behavior in the con- 	 27. The computer-accessible medium of claim 24, the
structed models.	 medium further comprising executable instructions capable

18. The computer-accessible medium of claim 16, wherein 	 of directing the processor to perform:
the mathematical properties of the script include: 	 40	 analyzing the formal specification, whereby analyzing

	

whether the script implies a system execution trace that
	

includes identifying at least one equivalent alternative

	

includes a deadlock condition, wherein a deadlock con- 	 process-based specification and characterizing differ-

	

dition is a condition in which two executing processes 	 ences between the process-based specification and the at
each wait for the other to finish;

	
least one alternative process-based specification,

	

whether the script implies a system execution trace that 45	 wherein differences include the number of processes,

	

includes a livelock condition, wherein a livelock condi- 	 deterministic behavior, and competition for resources.

	

tion is a condition in which two executing processes
	 28. The computer-accessible medium of claim 24, the

	

each wait for the other to finish, as their relative internal
	

medium further comprising executable instructions capable

	

states change continually during execution without	 of directing the processor to perform:
progress being made by either process; and

	
50	 determining mathematical and logical properties of the

	

whether the script implies a system execution trace that
	

format specification by an automated inference engine,

	

exhibits or does not exhibit a plurality of other behav- 	 wherein the inference engine iteratively applies a set of
iors,	 rules to a set of data representing a problem to determine

	

wherein a trace is a sequence of actions expressed as strings 	 a solution to the problem by logical manipulation and
representing a history of an execution of a process. 	 55	 analysis of the data.

19. The computer-accessible medium of claim 11, wherein
	 29. The computer-accessible medium of claim 24, wherein

the script includes: 	 the instructions include instructions capable of directing a
a script encoded in PERL language. 	 processor to perform:
20. The computer-accessible medium of claim 11, wherein 	 pattern-matching the plurality of substantially complete

the script includes: 	 60	 scenarios to a separate formal specification without the
a script encoded in BIOPERL language. 	 use of an automated inference engine, whereby pattern-
21. The computer-accessible medium of claim 11, wherein 	 matching includes checking for the presence of the con-

the script includes: 	 stituents of a given pattern to test whether things have
a script encoded in PYTHON language. 	 desired structure, to find relevant structure, to retrieve
22. The computer-accessible medium of claim 11, wherein 65	 aligning parts or to substitute a matching part.

the script includes:
	 30. The computer-accessible medium of claim 24, wherein

a script encoded in awk language. 	 the format specification includes:

US 7,668,796 B2
35
	

36
	a process algebra, wherein the process algebra is a member 	 generating at least one scenario that describes require-

	

of a diverse family of related approaches to formally 	 ments of the system;

	

modeling concurrent systems that provide a tool for the 	 optionally generating at least one additional scenario using

	

high-level description of interactions, communications, 	 automata learning resources, automata-learning
and synchronizations between a collection of indepen- 5	 resources being a system interface that maps functions

	

dent agents processes, along with algebraic laws that 	 and structures the learning process; and

	

allow process descriptions to be manipulated and ana- 	 generating at least one implementation from the at least

	

lyzed, and permit formal reasoning about equivalences 	 one scenario by pattern matching with set comprehen-
between processes.	 sions without a theorem prover, whereby pattern-match-

31. The computer-accessible medium of claim 30, wherein 10	 ing includes checking for the presence of the constitu-
the process algebra includes:	 ents of a given pattern to test whether things have desired

	

a language of Communicating Sequential Processes, 	 structure, to find relevant structure, to retrieve aligning

	

wherein Communicating Sequential Processes is a for- 	 parts, or to substitute a matching part.

	

mal language for describing patterns of interaction in
	 38. The method of generating a system of claim 37, the

concurrent systems.	 15 method further comprising:
32. A computer-accessible medium having executable 	 pattern matching the at least one scenario to at least one

	

instructions to validate a system, the executable instructions	 process-based specification segment, whereby pattern-
capable of directing a processor to perform: 	 matching includes checking for the presence of the con-

	

generating a plurality of substantially complete scenarios 	 stituents of a given pattern to test whether things have
from a plurality of less than substantially complete sce- 20	 desired structure, to find relevant structure, to retrieve
narios using automata learning processes; and

	
aligning parts, or to substitute a matching part.

	

pattern-matching the scenarios to a formal model, whereby
	 39. The method of generating a system of claim 37, the

	

pattern-matching includes checking for the presence of
	

method further comprising:

	

the constituents of a given pattern to test whether things 	 pattern matching the atleast one scenario to a formal speci-
have desired structure, to find relevant structure, to 25	 fication, in reference to an inference engine, whereby

	

retrieve aligning parts, or to substitute a matching part, 	 pattern-matching includes checking for the presence of
such that the processor validates the system.	 the constituents of a given pattern to test whether things
33. The computer-accessible medium of claim 32, the

	
have desired structure, to find relevant structure, to

	

medium further comprising executable instructions capable 	 retrieve aligning parts, or to substitute a matching part.
of directing the processor to perform:	 30	 40. The method of generating a system of claim 39, the

analyzing the formal model. 	 method further comprising:
34. The computer-accessible medium of claim 33, wherein 	 analyzing the formal specification for flaws, whereby ana-

	

the instructions include instructions capable of directing a
	

lyzing includes identifying at least one equivalent alter-
processor to perform:	 native process-based specification and characterizing

applying mathematical logic to the formal model in order 35	 differences between the process-based specification and

	

to identify a presence or absence of mathematical prop-	 the at least one alternative process-based specification,
erties of the formal model. 	 wherein differences include the number of process,

35. The computer-accessible medium of claim 34, wherein
	

deterministic behavior, and competition for resources;
the mathematical properties of the formal model include	 and

whether the formal model implies a system execution trace 40	 correcting any flaws in the formal specification.

	

that includes a deadlock condition, wherein a deadlock
	

41. The method of generating a system of claim 40, the

	

condition is a condition in which two executing pro-	 method further comprising:
cesses each wait for the other to finish;	 translating the formal specification into a plurality of

	

whether the formal model implies a system execution trace 	 scripts; and
that includes a livelock condition, wherein a livelock 45	 generating a single script from the plurality of scripts.

	

condition is a condition in which two executing pro-	 42. The method of generating a system of claim 37, the

	

cesses each wait for the other to finish, as their relative	 method further comprising:

	

internal states change continually during execution 	 mechanically translating domain knowledge into format
without progress being made by either process; and

	
specification segments, wherein domain knowledge is

whether the formal model implies a system execution trace 50	 formalized according to standards for expressing, the

	

that exhibits or does not exhibit a plurality of other 	 standards for expressing including the standard for
behaviors,	 expressing independence of action, the standard for

	

wherein a trace is a sequence of actions expressed as strings 	 expressing precedence, the standard for expressing cau-
representing a history of an execution of a process. 	 sality, the standard for expressing concurrency, and the

36. The computer-accessible medium of claim 34, wherein 55	 standard for expressing similarity.
the formal model includes:

	
43. A method of generating a software system, the method

	

a process algebra, wherein the process algebra is a member 	 comprising:

	

of a diverse family of related approaches to formally 	 generating at least one scenario using automata learning

	

modeling concurrent systems that provide a tool for the 	 resources, automata-learning resources being a system
high-level description of interactions, communications, 60	 interface that maps functions and structures the learning

	

and synchronizations between a collection of indepen-	 process;

	

dent agents or processes, along with algebraic laws that
	

translating domain knowledge into a plurality of formal

	

allow process descriptions to be manipulated and ana- 	 specification segments, wherein domain knowledge is

	

lyzed, and permit formal reasoning about equivalences
	

formalized according to standards for expressing, the
between processes.	 65	 standards for expressing including the standard for

37. A method of generating a system from requirements 	 expressing independence of action, the standard for

	

using automata learning techniques, the method comprising: 	 expressing precedence, the standard for expressing can-

US 7,668,796 B2
37

sality, the standard for expressing concurrency, and the
standard for expressing similarity;

aggregating the formal specification segments into a single
formal specification;

translating the single formal specification into at least one
script; and

generating a single script from the at least one script.
44. The method of generating a software system of claim

43, wherein translating domain knowledge into a plurality of

38
formal specification segments is accomplished without
human intervention and includes:

verifying the syntax of the at least one scenario;
mapping the at least one scenario into a format specifica-

tion;
verifying the consistency of the format specification; and
verifying a tack of other problems.

	7668796-p0001.pdf
	7668796-p0002.pdf
	7668796-p0003.pdf
	7668796-p0004.pdf
	7668796-p0005.pdf
	7668796-p0006.pdf
	7668796-p0007.pdf
	7668796-p0008.pdf
	7668796-p0009.pdf
	7668796-p0010.pdf
	7668796-p0011.pdf
	7668796-p0012.pdf
	7668796-p0013.pdf
	7668796-p0014.pdf
	7668796-p0015.pdf
	7668796-p0016.pdf
	7668796-p0017.pdf
	7668796-p0018.pdf
	7668796-p0019.pdf
	7668796-p0020.pdf
	7668796-p0021.pdf
	7668796-p0022.pdf
	7668796-p0023.pdf
	7668796-p0024.pdf
	7668796-p0025.pdf
	7668796-p0026.pdf
	7668796-p0027.pdf
	7668796-p0028.pdf
	7668796-p0029.pdf
	7668796-p0030.pdf
	7668796-p0031.pdf
	7668796-p0032.pdf
	7668796-p0033.pdf
	7668796-p0034.pdf
	7668796-p0035.pdf
	7668796-p0036.pdf
	7668796-p0037.pdf
	7668796-p0038.pdf
	7668796-p0039.pdf
	7668796-p0040.pdf
	7668796-p0041.pdf
	7668796-p0042.pdf
	7668796-p0043.pdf
	7668796-p0044.pdf
	7668796-p0045.pdf
	7668796-p0046.pdf
	7668796-p0047.pdf

